
Hidden Number Problems

Barak Shani

A thesis submitted in fulfillment of the requirements for the degree of

Doctor of Philosophy in Mathematics

The University of Auckland

2017

Abstract

The hidden number problem is the problem of recovering an unknown group element (the

“hidden number”) given evaluations of some function on products of the hidden number

with known elements in the group. This problem enjoys a vast variety of applications,

and provides cross-fertilisation among different areas of mathematics.

Bit security is a research field in mathematical cryptology that studies leakage of in-

formation in cryptographic systems. Of particular interest are public-key cryptosystems,

where the study revolves around the information about the private keys that the public

keys leak. Ideally no information is leaked, or more precisely extraction of partial in-

formation about the secret keys is (polynomially) equivalent to extraction of the entire

keys. Accordingly, studies in this field focus on reducing the problem of recovering the

private key to the problem of recovering some information about it. This is done by

designing algorithms that use the partial information to extract the keys. The hidden

number problem was originated to study reductions of this kind.

This thesis studies the hidden number problem in different groups, where the functions

are taken to output partial information on the binary representation of the input. A spe-

cial focus is directed towards the bit security of Diffie–Hellman key exchange. The study

presented here provides new results on the hardness of extracting partial information

about Diffie–Hellman keys.

Contents

1 Introduction 1

1.1 Summary of Contributions . 2

2 Background 7

2.1 Finite Fields . 7

2.1.1 Cyclotomic Subgroups and Algebraic Tori 9

2.2 Lattices . 11

2.3 Elliptic Curves . 12

2.4 Elimination Techniques . 14

2.5 Fourier Analysis on Finite Groups . 15

2.6 Diffie–Hellman Key Exchange . 18

2.6.1 Prime Fields . 19

2.6.2 Extension Fields . 19

2.6.3 Supersingular Isogeny Diffie–Hellman 21

3 Sets of Large Fourier Transform 24

3.1 Definitions and Elementary Results . 24

3.2 SFT Algorithms . 28

3.3 Concentrated Functions . 31

3.3.1 The Concentration of All Single-bit Functions 34

3.4 Non-concentrated Functions . 37

4 Bit Security 41

4.1 Motivation . 41

4.2 Framework . 43

4.3 Diffie–Hellman & the Hidden Number Problem 44

4.4 Types of Partial Information . 46

4.4.1 Most Significant Bits . 46

4.4.2 Other Consecutive Bits . 47

iii

5 Hidden Number Problem in Finite Fields 49

5.1 Solutions . 50

5.1.1 Other Partial Knowledge . 52

5.2 Applications . 54

6 Hidden Number Problem with Chosen Multipliers 57

6.1 Linear Operations . 57

6.2 Applications . 59

6.2.1 Bit Security of non-uniform Diffie–Hellman Related Schemes . . . 59

6.2.2 Hardness of Computing Bits of Diffie–Hellman Keys in Different

Group Representations Simultaneously 61

6.3 Non-linear Operations . 65

7 The Modular Inversion Hidden Number Problem 67

7.1 Elliptic Curve Hidden Number Problem 73

7.1.1 Exposition . 74

7.1.2 Main Results . 76

7.1.3 Extension Fields . 92

7.2 Algebraic Torus Hidden Number Problem 96

7.2.1 Algebraic Torus T2 . 97

7.2.2 Algebraic Torus T6 . 101

8 Isogeny Hidden Number Problem 104

8.1 Exposition . 105

8.2 Main Results . 107

8.2.1 Hardcore Bits for Supersingular Isogeny Diffie–Hellman 108

9 Bit Security of CDH Under DDH 111

9.1 Exposition . 111

9.2 Representing Bits by Approximations . 112

9.3 Distribution of gx . 113

9.4 Main Results . 114

9.4.1 The Most Significant Bit . 115

9.4.2 Predicting the Bits . 117

9.4.3 Other Bits . 117

10 Concluding Remarks 120

10.1 Future Directions . 121

References 126

iv

Chapter 1

Introduction

40 years ago, in November 1976, Whitfield Diffie and Martin Hellman published their

groundbreaking paper “New Directions in Cryptography”, which proposes an approach

that allows two people with no prior acquaintance to have private conversations over

public communication channels. This approach was the first to show how two parties

can share a secret key over insecure channels without long-term preparation, it is known

today as “Diffie–Hellman key exchange”. This work was the kickstart to public-key cryp-

tography, a field which in its foundations are hard mathematical problems. In particular,

the underlying problem in Diffie–Hellman key exchange, called the computational Diffie–

Hellman problem, is to compute the shared secret key given the public keys.

A fundamental notion in public-key cryptography is one-way functions, which are

operations that their result on a given input is easy to compute, while the opposite

direction – given the result and computing the input – is computationally hard. This

notion of hardness is at the center of the thesis. Is it possible to learn anything about the

input (besides being in the domain of the function and its image under it)? Of particular

interest is the binary representation of the input value: is it possible to compute, or

predict with good probability, some of its bits? Extensive research on questions of this

kind had been taken in the first two decades of public-key cryptography.

Left behind was the Diffie-Hellman key, the shared secret key in Diffie–Hellman key

exchange, as no results on the hardness of computing its bits were given. However, 20

years ago, in August 1996, this long-lasting problem saw a first result in the seminal

work of Boneh and Venkatesan. Using lattice basis reduction algorithms they show that

a relatively small block of most significant bits of the Diffie–Hellman key is as hard to

compute as the entire key. While improvements to this result have been given, this is in

fact the only known result for the original Diffie–Hellman key exchange scheme, which

takes place in the multiplicative group of a finite field. Subsequent results have been

given for variants of the Diffie–Hellman key exchange scheme, where the Diffie–Hellman

1

key is a finite field element, however these results are based on the same lattice approach

in the original work, providing the same result on these Diffie–Hellman keys. On the

other hand, when the scheme takes place over a different group no results are known,

with the exception of the group of elliptic curve points over a quadratic finite field.

Besides of the theoretical appeal of this problem it has practical sides. For example,

when the parties perform a key share their shared key is a group element, from which

they need to derive a bit string of certain length. It is most natural and practical that

they use some string of bits of this element. In order to guarantee that this bit string

gives the required security level, it is necessary to have a proof that computing the chosen

bit string is not (drastically) easier than computing the entire key. Results of this kind

are called bit security results.

The primary topic of the thesis is the hidden number problem, which abstracts de-

tails of secondary importance that arise in formalising questions on the bit security of

Diffie–Hellman keys. This problem was introduced by Boneh and Venkatesan in the

aforementioned work. Its generality makes this problem interesting for other purposes.

It received attention from several different areas and enjoys many applications. In par-

ticular, it is related to the learning with errors problem, though we do not discuss this

relation. The thesis studies variants of this problem, where for an application we focus

on proving that bits of Diffie–Hellman keys as are hard to compute as the entire key.

The mathematical principle in the study of this problem is reduction. One reduces the

problem of computing the entire value to computing partial information about it. This

requires providing a proof that if an algorithm that computes some partial information

about the “hidden” value is given, then it can be used to recover the entire value. This

shows that computing the partial information is not easier than computing whole of the

information. In order to provide such proofs, one can use a vast supply of mathematical

tools, for example the lattice structure and lattice basis reductions as mentioned above.

Finding the right structures and tools is many times the crux of the reduction. Unfortu-

nately the ideas used in the literature are very limited, which is reflected by the lack of

results.

1.1 Summary of Contributions

The main contribution of the study presented here is proofs of the bit security of Diffie–

Hellman keys in different groups. Arguably the most interesting open problem in this

research field is to provide bit security results for Diffie–Hellman key exchange in the

group of elliptic curve points over a finite field of prime size. Elliptic curves are of

greatest use in contemporary cryptography, and so studying their security is of main

2

interest. Proving a bit security result for elliptic curve Diffie–Hellman keys was stated

as an open problem nearly 20 years ago. Such a result is presented here. In a similar

fashion, the bit security of Diffie–Hellman key exchange in the algebraic torus is studied

here, and a first result in this group is given. With a look to the future for the post-

quantum era, where contemporary public-key cryptography is insecure, several Diffie–

Hellman-like key exchanges have been proposed in the literature. Increasing attention is

directed to the supersingular isogeny cryptosystem, proposed by Jao and De Feo, which is

based on isogenies between supersingular elliptic curves. Its appeal for the post-quantum

era comes from the fact that the ring structure that arises from these isogenies is non-

commutative. The first bit security result for supersingular isogeny Diffie–Hellman key

exchange is presented here. All these results are achieved by solving the corresponding

hidden number problem.

We highlight the contributions of this thesis, followed by a detailed overview:

� Fourier analysis: introducing the multivariate scaling property and providing an

alternative proof to the Fourier concentration of single-bit functions.

� Solution to the multivariate hidden number problem with chosen multipliers for all

single-bit functions.

� Solution to the elliptic curve hidden number problem given a portion of 5/6-th most

significant bits, and application to the bit security of elliptic curve Diffie–Hellman

key exchange.

� Improving the bit security result for elliptic curve Diffie–Hellman key exchange for

curves defined over extensions fields to all fields of a constant extension degree.

� Solution to the algebraic torus hidden number problem for the torus T2 given a por-

tion of 2/3-rd most significant bits, and application to the bit security of algebraic

torus Diffie–Hellman key exchange.

� Solution to the isogeny hidden number problem given one component of the quadratic

field representation, and application to the bit security of supersingular isogeny

Diffie–Hellman key exchange.

� Improving the bit security result relying on the decisional Diffie–Hellman assump-

tion to single bits.

Thesis Structure The thesis structure is the following:

3

� Chapter 2 presents variants of Diffie–Hellman key exchange and provides back-

ground on the algebraic structures and the tools that are used throughout the

thesis.

� Chapter 3 focuses on results in discrete Fourier analysis. We prove the multivariate

scaling property of the Fourier transform, analyse the SFT algorithm and reprove

that all single-bit functions are Fourier concentrated.

� Chapter 4 introduces the framework and basic notions in the study of bit security,

for which the following chapters are dedicated to.

� Chapters 5–8 take the following structure: a concrete hidden number problem is

presented, then a solution to it is given, and finally the solution is applied to obtain

bit security results.

� Chapter 5 surveys the solutions to the original hidden number problem and appli-

cations to bit security of Diffie–Hellman keys in finite fields.

� Chapter 6 deals with a chosen-multiplier variant of the hidden number problem. We

apply the tools from Chapter 3 to solve this variant of the hidden number problem

where the operation in the latter is linear.

� Chapter 7 surveys the modular inversion hidden number problem, uses it to solve

the elliptic curve and the algebraic torus hidden number problems, and provides

bit security results for the corresponding Diffie–Hellman key exchange.

� Chapter 8 introduces and solves the isogeny hidden number problem.

� Chapter 9 studies the bit security of Diffie–Hellman key exchange with respect to

the decisional Diffie–Hellman.

� Chapter 10 gives some concluding remarks and future directions.

Overview We now turn to a detailed overview of the main contributions.

Chapter 3 is dedicated to Fourier analysis on finite groups and may be of independent

interest. In the past decade there has been a revival in the interest of studying the bit

security of Diffie–Hellman keys. Underlying this renewed study is a chosen-multiplier

variant of the hidden number problem, and some tools in Fourier analysis that allow to

solve this variant. In fact, this variant already admits a solution, given by H̊astad and

Näslund almost 20 years ago, however this new proof is much simpler, which may be the

cause that led to the renewed interest. Our study focuses on concentrated functions, which

4

are functions that can be approximated, up to any error term, by linear combinations

using small number of Fourier coefficients. A result of Morillo and Ràfols is that every

single-bit function is concentrated. Our main contribution in this field is a new approach

that allows to prove that certain functions are concentrated. In particular, applying

this approach on single-bit functions gives a simpler proof to the result of Morillo and

Ràfols. A secondary contribution is a generalisation to the scaling property of the Fourier

transform, which we call the multivariate scaling property. The original (univariate)

scaling property is a special case of our result. The scaling property is of great use to

the study of concentrated functions and their applications, as it allows to show that a

concentrated function remains concentrated on a composition with affine functions. We

give a criterion for functions that their composition on a concentrated function results

in a concentrated function: roughly speaking, among all low degree rational functions

only affine functions preserve concentration. Applications of these results to the hidden

number problem and subsequently applications for Diffie–Hellman related schemes are

presented in Chapter 6, along with a review of previous applications. The context of

these applications to the bit security of Diffie–Hellman keys however is very limited.

Chapter 7 considers the hidden number problem for elliptic curves and the algebraic

tori. Their relatively complex group operations make these structures unsuitable for

approaches taken for finite fields. A very useful tool in studying the problem in these

groups is a modular inverse variant of the hidden number problem. This variant was

introduced by Boneh, Halevi and Howgrave-Graham, in part to study the bit security of

elliptic curve Diffie–Hellman keys. They proposed a solution to this problem which uses

known lattice basis algorithms that computes roots of small size for (modular) polynomi-

als. However, they could not obtain a strong result for elliptic curve Diffie–Hellman, as

these algorithms are highly sensitive to the structure of the polynomials. It is therefore

necessary to generate polynomials with structure that better suits this kind of algorithms.

We present an approach that produces polynomials of a desired structure, and follow the

rigorous approach to this variant of the hidden number problem, that was given by Ling,

Shparlinski, Steinfeld and Wang, to provide the first proof that certain bits of the ellip-

tic curve Diffie–Hellman key are as hard to compute as the entire key. This approach

carefully uses algorithms for computing short vectors in a lattice. This reduction also

gives the first example where the full abstraction in the hidden number problem is too

general for the bit-security study of Diffie–Hellman key exchange. We work with a less

abstract problem, which still follows from the study of Diffie–Hellman key exchange, that

enables us to generate better suited polynomials. We also show that this new approach

is applicable for elliptic curves defined over extension fields, this enables us to extend

and improve the result on Diffie–Hellman keys in these groups. For the torus, once the

5

problem is formalised, our result follows almost immediately from the previous work.

Chapter 8 studies the shared key in supersingular isogeny Diffie–Hellman key ex-

change. We formalise a new problem, which we call the isogeny hidden number problem,

and show its relevance to this study. Our reduction uses the modular polynomials for

elliptic curves, which are of great relevance to the study of isogenies. To study this prob-

lem it is very convenient to work on the isogeny graph of a fixed degree. We show how

this cryptosystem allows us to work over elliptic curves of minimal distance on the graph,

which is important for our use of the modular polynomial. The supersingular isogeny

Diffie–Hellman key is an element of a quadratic finite field, which we represent by two

components in the ground field. Our result shows that computing one component of this

representation is sufficient for the full recovery of the key, that is we show how to com-

pute the other component. This result can be thought of as computing half of the bits of

the shared secret key is as hard as computing all of them. As information theoretically

required, our reduction works with the minimum amount of two curves on the graph.

Moreover, we generalise our reduction to the case in which the probability that we have

obtained the correct component of the key is low. Reductions for Diffie–Hellman keys

that hold in the case that some partial information is wrong are very limited, and usually

impose some extra assumptions – these are not needed in our case. As an application,

parties that use this key exchange scheme can safely use the value in one component in

the key derivation, given that it admits the required bit length.

Chapter 9 takes a different approach. Instead of the computational Diffie–Hellman

problem, we reduce the decisional Diffie–Hellman problem to the problem of computing

bits of Diffie–Hellman keys. This approach is well known and for almost any partial

information on the Diffie–Hellman key it allows one to solve the decisional Diffie–Hellman

problem with better success probability than the guessing strategy. The study taken here

is of making this success probability perfect. Not many studies of this kind have been

performed, and the best result, given by Blake, Garefalakis and Shparlinski, shows how

to solve the decisional Diffie–Hellman problem with overwhelming probability given a

group element that approximates the second most significant bit and a fraction of the

most significant bit of the Diffie–Hellman key. This is similar to the case where two most

significant bits are given. With careful analysis we improve this result to the case where

only one bit is given. Our reduction holds for almost every single bit of the Diffie–Hellman

key (except for some inner bits), and holds for all bits if one is given four consecutive bits.

We also improve the previous result to the case where one is given a group element that

approximates only a fraction of the most significant bit of the Diffie–Hellman key. Finally,

we show that the reduction holds also in the case that some of the given information is

wrong.

6

Chapter 2

Background

This chapter reviews basic notions and their properties, and presents the notation. This

review is not exhaustive, however it presents all the tools used in this thesis.

Basic Notation As is customary N,Z,R,C denote the sets of natural, integral, real

and complex numbers, respectively. We use #S, or |S|, to denote the cardinality of a set

S. Vectors are given in row notation and are usually denoted by bold letters. For two

vectors x,y we write x ≡ y (mod p) if the equivalence holds for each of their coordinates.

The function log is the logarithmic function with base 2.

2.1 Finite Fields

The algebraic structures that appear throughout this work are built on finite fields.

We define the notation and review some elementary facts. Finite fields are discussed

extensively in the book by Lidl and Niederreiter [60].

Let Fq be the field with q elements, then q is a prime power q = pm for a prime p and

a positive integer m. When m = 1 then Fp is a prime field, otherwise Fq is a non-prime

field. We denote the multiplicative group of the field Fq by F∗q.

Prime Fields Let p be a prime number and Fp the field with p elements. We represent

Fp by the set Zp = {0, 1, . . . , p − 1}, with arithmetic modulo p. Its multiplicative group

F∗p is represented by the set Z∗p = {1, . . . , p−1}. The modular norm of an element x ∈ Fp
is defined to be |x| := min{x, p− x}; this notion can be generalised to any number z and

any modulus N by |z|N := mink∈Z{|x− kN |}.

Extension Fields Let p be a prime number and a m be positive integer, and set

q := pm. The field Fq can be viewed as a vector space over Fp of dimension m. In this

7

case Fq is a finite field-extension of Fp, which we call an extension field, m is the extension

degree and p is the characteristic of Fq. We remark that as a vector space Fq does not

have to be taken over the prime field Fp; it can also be viewed as vector space over any

of its subfields. When m > 1 the non-prime field Fq has many different representations,

and as the field Fq is unique, they are isomorphic to each other. A standard and common

way to represent Fq is by the quotient ring Fp[x]/(f), where Fp[x] is the polynomial ring

over Fp, the polynomial f is a degree-m irreducible polynomial over Fp and (f) is the

(principal) ideal generated by f . As a vector space, the polynomial basis of a polynomial

representation is {1, α, α2, . . . , αm−1}, where α is a root of f . Another representation of

Fq comes from the normal basis defined by the set of all conjugates {θ, θp, θp2 , . . . , θpm−1}
for a suitable element θ (such that this set is linearly independent). Every finite extension

of Fq is algebraic over Fq, so in general one can represent an extension field by adjoining

algebraic elements to Fq. Of our particular interest is the field Fq2 , which we represent

by Fq2 = Fq(θ), where

θ2 + Aθ +B = 0, A,B ∈ Fq and x2 + Ax+B is irreducible over Fq . (2.1)

Trace and Norm Let F = Fq be a finite field and Let K = Fqm be a finite field-extension

of F of degree m. Consider K as an m-dimensional vector space over F. The Galois

conjugates of elements in K give rise to two important notions. The norm NK/F : K→ F
is the function that multiplies the conjugates:

NK/F(α) := α · αq · · · · · αqm−1

.

The trace TrK/F : K→ F is the function that sums the conjugates:

TrK/F(α) := α + αq + · · ·+ αq
m−1

.

Notice that in both cases the result is an element of the ground field F. The trace is a

linear transformation from K to F, in fact all the linear transformations from K to F can

be defined using the trace function. All α ∈ K satisfies Tr(αq) = Tr(α). In addition, the

trace is transitive in the following sense: if F ⊆ K ⊆ L is a tower of extensions, then

TrL/F(α) = TrK/F(TrL/K(α)) for every α ∈ L. When the fields are clear from the context

we omit them and write Tr(α).

Let {b1, . . . , bm} be a basis of Fqm , and let {θ1, . . . , θm} be its dual basis, defined to

satisfy

Tr(biθj) =

0 if i 6= j,

1 if i = j.

8

The linearity of trace allows to represent any α ∈ Fpm by α =
∑m

i=1 Tr(αθi)bi. Indeed,

m∑
i=1

Tr(αθi)bi =
m∑
i=1

Tr

(
m∑
j=1

αjbjθi

)
bi =

m∑
j=1

αj

m∑
i=1

Tr(bjθi)bi =
m∑
j=1

αjbj = α .

2.1.1 Cyclotomic Subgroups and Algebraic Tori

We give a general description of the cyclotomic subgroup and the algebraic torus, and

review some of their properties. Background and further details can be found in Gal-

braith [31, Chapter 6].

The n-th cyclotomic polynomial Φn(x) is the product of (x−z) over all primitive n-th

roots of unity z (over C). It is well known that xn − 1 = π1≤d≤nΦd(x) for divisors d | n.

The multiplicative group of the field Fq satisfies |F∗qn| = qn − 1. Therefore, Φn(q) divides

|F∗qn|, and so F∗qn has a subgroup of order Φn(q). We define the cyclotomic subgroup Gq,n

to be the subgroup of F∗qn of order Φn(q). The subgroup Gq,n has the property that any

of its elements of order greater than n does not lie in any proper subfield of Fqn .

Algebraic Tori Let An(Fq) denote the n-dimensional affine space over Fq. Consider an

Fq-linear bijection f : An(Fq)→ Fqn . We define the algebraic torus Tn(Fq) to be all points

in a ∈ An(Fq) satisfying NFqn/Fqd (f(a)) = 1; that is Tn(Fq) is the affine algebraic set

V ({NFqn/Fqd (f(x1, . . . , xn))− 1 | 1 ≤ d ≤ n, d | n}) ⊆ An .

The torus Tn(Fq) is irreducible as an algebraic set and of dimension ϕ(n), where ϕ is

Euler’s phi function, and it is isomorphic as a group to the cyclotomic subgroup Gq,n.

Therefore, there is a group operation on Tn(Fq) inherited from the multiplication in

Gq,n ⊆ F∗qn . When the field Fq is clear in the context we omit it and write An,Tn.

We say that the torus Tn is rational if there is a birational map ρ (or ρn) from Tn
to Aϕ(n); denote its inverse by ψ (or ψn). This map is not necessarily one-to-one, as it

may not be defined for all points. We say that a point g ∈ Tn is regular if it can be

represented in Aϕ(n) using the birational equivalence, that is the map is defined on g. If

Tn(Fq) is rational then Aϕ(n)(Fq) is an explicit rational parametrization of Tn which also

gives a compact representation of Gq,n. In this case, the group operation on the torus

Tn induces a “partial” group law on Aϕ(n), denoted by ? or ?n. Sufficiently many points

in Tn are regular, and so one can use the compact representation in Aϕ(n)(Fq) and the

operation ? to perform arithmetic in Tn(Fq) or equivalently in Gq,n.

9

The Group Gq,2 Let Fq2 = Fq(θ) as in (2.1). The conjugate of θ is θ̄ := θq = −A− θ.
The order of Gq,2

∼= T2(Fq) is q + 1. The subgroup Gq,2 ⊆ F∗q2 is the set of all elements

g ∈ F∗q2 such that gḡ = gq+1 = 1. It is easy to check that the q + 1 elements in the set{
a+ θ

a+ θ̄

∣∣∣∣ a ∈ Fq
}
∪ {1}

are distinct and of norm 1, and so Gq,2 can be represented by this set.

Pick g ∈ Gq,2, then on one hand g = a+θ
a+θ̄

for some a ∈ Fq, and on the other g = g1+g2θ

as it is an element in Fq2 . Equating the two, one can determine g1, g2 with respect to

a. This gives that each element of the form (a + θ)/(a + θ̄) ∈ Gq,2 corresponds to the

element

ψ(a) :=

(
a2 −B

a2 − aA+B
,

2a− A
a2 − aA+B

)
of T2. On the other hand, one can determine a with respect to g1, g2, which gives the

mapping ρ (excluding the non-regular points ±1). For a, b ∈ A1(Fq), the partial group

law on A1, derived from a+θ
a+θ̄
· b+θ
b+θ̄

, is given by the following operation in Fq:

a ? b =
ab−B
a+ b− A

.

The inverse map is given by a′ = A− a.

The Group Gq,6 Developing the theory for Gq,6 and T6(Fq) is more complex than the

previous case. As the entire theory is not needed here, we highlight the basic facts. It is

common to represent Fq6 as a degree 2 field extension of Fq3 , since we can use the theory

for Gq,2. That is, let Fq6 = Fq3(θ), where θ2 + Aθ + B = 0 and A,B ∈ Fq3 such that

x2 + Ax + B is irreducible over Fq3 . The order of Gq,6
∼= T6(Fq) is q2 − q + 1. It follows

that we can apply ρ2 from above on T6 to have a representation in A1(Fq3) ∼= A3(Fq). It

is therefore left to find a birational map from the latter to A2(Fq). This mapping involves

a hypersurface in A3(Fq), which we call U . Then, for some point P = (xP , yP , zP) on U ,

we define the map pU : A3(Fq)→ A2(Fq) by

pU(xQ, yQ, zQ) =

(
yQ − yP
xQ − xP

,
zQ − zP
xQ − xP

)
.

The inverse of this map is defined using some bivariate linear polynomial g and some

bivariate quadratic polynomial h such that

p−1
U (a1, a2) = P+

g(a1, a2)

h(a1, a2)
(1, a1, a2) =

(
g(a1, a2)

h(a1, a2)
+xp,

g(a1, a2)

h(a1, a2)
a1 +yp,

g(a1, a2)

h(a1, a2)
a2 +zp

)
.

10

Finally, the map ρ : T6(Fq)→ A2(Fq) is given by ρ = pU ◦ρ2, and its inverse ψ : A2(Fq)→
T6(Fq) is given by ψ = ψ2 ◦ p−1

U .

Let a = (a1, a2), b = (b1, b2) ∈ A2(Fq). To compute the partial group law in A2(Fq)
one needs to compute ψ(a)ψ(b) (as elements of Gq,6) and apply ρ on this product. Equiv-

alently, we can compute a ? b by applying pU on

p−1
U (a) ?2 p

−1
U (b) =

p−1
U (a)p−1

U (b)−B
p−1
U (a) + p−1

U (b)− A
,

where the operations in the right-hand side take place in Fq3 .

2.2 Lattices

Lattices are structures that appear in different aspects of mathematics and are subject

of extensive studies in different areas of mathematics such as geometry of numbers, Lie

algebra and sphere packing. Their presence in mathematics is huge, but we only touch

a tiny bit of the lattice world. We focus on Euclidean lattices, which are discrete sub-

groups of the Euclidean space. We restrict this review to basic structures and some hard

problems.

Euclidean Lattices Consider the Euclidean space Rd, and denote the (Euclidean)

norm of a vector v ∈ Rd by ‖v‖. We are interested in the structure arising from integral

linear combinations of some set of vectors. Let B = {b1, . . . ,br} be a set of linearly

independent vectors in Rd. The set

L = L(B) =

{
r∑
i=1

nibi | ni ∈ Z

}

is the lattice generated by B and B is a basis for L. The number r, which is the number

of vectors in B, is the dimension or rank of L(B). If r = d, the lattice L(B) is a

full-dimension (or full-rank) lattice. Full-rank lattices of Rd are isomorphic to Zd. An

important notion is the volume or determinant of L(B), denoted by V ol(L(B)). The

volume V ol(L) equals to the volume of the d-dimensional parallelepiped spanned by B.

This is an invariant of the lattice and independent of the basis B. In particular, for a

full-rank lattice the volume equals to the absolute value of the determinant of any lattice

basis.

Hard Lattice Problems Since lattices are discrete they have a shortest non-zero

vector, which its norm is known as the first minima and denoted by λ1(L). That is,

11

λ1(L) = min{‖u‖ | 0 6= u ∈ L}. The problem of finding a non-zero vector v ∈ L

with minimal norm, that is ‖v‖ = λ1(L) is the shortest vector problem (SVP). A more

relaxed version is the γ-shortest vector problem (γ-SVP), where for a lattice L in Rd and

a real number γ ≥ 1 the problem is to find a non-zero lattice vector v ∈ L with norm

not larger than γ times the norm of the shortest non-zero vector in L. In other words,

‖v‖ ≤ γmin{‖u‖ | 0 6= u ∈ L}.
A similar problem is the closest vector problem (CVP), where for a lattice L and

some vector v ∈ Rd, not necessarily in L, the problem is to find a lattice vector w ∈ L of

minimum distance from v. In other words, ‖w‖ ≤ min{‖u − v‖ | v ∈ L}. The γ-closest

vector problem (γ-CVP) is defined similarly. Babai gave the following solution to γ-CVP.

Lemma 2.1 ([5, Theorem 3.1]). Let L be a full rank lattice of dimension s. Given a

point v ∈ Rd, there exists a polynomial-time algorithm that finds a lattice point w ∈ L
such that

‖u− w‖ ≤ 2d/2 min{‖u− b‖ | b ∈ L} .

Some improvements are given by Schnorr [76]. This result, like many others, uses

the fundamental LLL algorithm of Lenstra, Lenstra and Lovász [56]. These problems are

fundamental problems in lattice cryptography. References to surveys and state-of-the-art

algorithms for these problems can be found in [61, Section 1.2].

2.3 Elliptic Curves

Elliptic curves play a main role in contemporary cryptography. The importance of elliptic

curve cryptography to public-key cryptography is invaluable. We review basic properties

and some of the notions regarding elliptic curve over finite fields. The book by Silver-

man [85] is a very good source for the theory of elliptic curves.

Consider the following equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 ,

with coefficients in Fq and no singular points. The set of points (x, y) ∈ F2
q that satisfy

this equation is the set of elliptic curve points, denoted by E(Fq) or simply by E.

Basic Properties For fields Fq of characteristic not equal to 2 or 3, as will be in the

following, one can represent an elliptic curve E in a short Weierstrass form

y2 = x3 + ax+ b ,

12

where a, b ∈ Fq. An equation of this form is non-singular if and only if the discriminant

∆ := −16(4a3 + 27b2) is not zero. Equivalently, there are no singular points if the right-

hand side in the Weierstrass equation has no repeated roots. A point P = (x, y) ∈ F2
p

that satisfies this equation is a point on the curve E. We denote the x-coordinate (resp.

y-coordinate) of a given point P by xP or Px (resp. yP or Py). The set of points on E,

together with the point at infinity O, is known to be an abelian group. Hasse’s theorem

states that the number of points #E on the curve E(Fq) satisfies

|#E − q − 1| ≤ 2
√
q .

The (additive) inverse of a point Q = (xQ, yQ) is −Q = (xQ,−yQ). For an integer n we

denote by [n]P the successive n-time addition of a point P , and we let [−n]P = [n](−P).

The m-torsion subgroup of E, denoted by E[m], is the group of points of order m, i.e.

E[m] := {P ∈ E | [m]P = O}. Addition of points P = (xP , yP) and Q = (xQ, yQ), where

P 6= ±Q, is given by the following formula. Let s = sP+Q =
yP−yQ
xP−xQ

, then

(P +Q)x = s2 − xP − xQ and (P +Q)y = −(yP + s((P +Q)x − xP)) .

The j-invariant of E is equal to −1728 (4a)3

∆
. It is an invariant of the curve in the

sense that it is independent of the curve representation; all isomorphic curves give rise

to the same j-invariant. An elliptic curve E is supersingular if and only if E[pr] = {O}
for every r ≥ 1; otherwise the curve is ordinary and then E[pr] ∼= Z/prZ. The number

of isomorphism classes of supersingular elliptic curves over Fq is approximately p/12;

therefore there are approximately p/12 different j-invariants for supersingular curves of

characteristic p. Every supersingular curve is isomorphic to a curve over Fp2 .

Isogenies Let E1, E2 be two elliptic curves defined over Fq. An isogeny is a morphism

φ satisfying φ(O1) = O2. We exclude the zero isogeny [0]P ≡ O from our discussion.

The degree of an isogeny φ is equal to the degree of φ as a morphism. If E1, E2 obtain a

degree-r isogeny we say that E1 and E2 are r-isogeneous. By Tate’s theorem E1, E2 are

isogenous if and only if #E1 = #E2. If an isogeny φ is separable, then deg φ = # kerφ.

One can define an isogeny by its kernel, in the sense that for every subgroup G ∈ E1 there

is a unique (up to isomorphism) curve E2 and a separable isogeny φ : E1 → E2 such that

kerφ = G. We write E1/G for E2. Thus, the number of distinct degree-r isogenies whose

domain is E1 is equal to the number of distinct subgroups of E1 of order r. Specifically,

for every prime r not equal to the characteristic of Fq, there are r+ 1 isogenies (over Fq)
of degree r. In particular, for r = 2 there are three distinct subgroups of E[2](Fp2), and

so there are three distinct isogenies over Fp2 .

13

The modular polynomial is of special interest in the study of isogenies. For background

and further details see [25, 9]. The modular polynomial of order r, denoted by Φr(X, Y) ∈
C[X, Y], is symmetric, has integral coefficients and is absolutely irreducible ([44]). We

would use the following result that relates r-isogenous curves.

Lemma 2.2. there is an isogeny of degree r from E1 to E2 whose kernel is cyclic if and

only if Φr(j(E1), j(E2)) = 0.

Computing isogenies between elliptic curves is considered to be a hard problem: given

two r-isogenous elliptic curves over Fq, there are no known algorithms that compute an

isogeny of degree r between the curves in time polynomial in log(q).

Pairings Let E be an elliptic curve over the field Fq, and let µm := {z ∈ Fq | zm = 1}
the set of all m-th roots of unity. The Weil pairing is a bilinear map em : E[m]×E[m]→
µm. That is

em(P1 + P2, Q) = em(P1, Q)em(P2, Q) ,

em(P,Q1 +Q2) = em(P,Q1)em(P,Q2) .

The Weil pairing is alternating: em(P, P) = 1 for all P ∈ E[m] (in particular em(P,Q) =

em(Q,P)−1); and is non-degenerate: if em(P,Q) = 1 for all P ∈ E[m] then Q = O.

Usually, one considers the pairing em into a finite extension field Fqk . An elliptic curve is

pairing-friendly if the embedding degree induced from em is “small”; this ensures that one

can efficiently compute the map em. For further theory and application see Galbraith [31,

Section 26].

2.4 Elimination Techniques

Elimination theory addresses the techniques to eliminate variables in a system of multi-

variate polynomials. Fundamental concepts are the resultant for bivariate polynomials

and the Gröbner basis, which gives a generating set for the ideal that generates the sys-

tem, and this set is relatively convenient for computations. We refer to the book by Cox,

Little and O’Shea [26] for further details.

Resultant Let p, q ∈ k[x, y] be two polynomials over some field k (this is a special case

of interest for the general theory of any number of variables). The resultant of p and q

with respect to y, denoted Res(p, q, y), is given by the determinant of the Sylvester matrix

of p and q as univariate polynomials in y, that is, we consider p, q ∈ k(x)[y]. The resultant

Res(p, q, y) is a univariate polynomial in x, and so it belongs to k[x]. The resultant is

14

useful for intersecting the set of solutions of two polynomials, as a univariate polynomial

can efficiently be factorised. Therefore, its degree is of interest. Denote by degz p the

degree of a polynomial p in some variable z. If p satisfies degx p = nx, degy p = ny and q

satisfies degx q = mx, degy q = my, then degx Res(p, q, y) ≤ mynx + nymx. An important

case is when the resultant is identically equal to zero, since then all points satisfy it. We

have the following condition.

Lemma 2.3. Res(p, q, y) = 0 if and only if f and g have a common factor in k[x, y] with

positive degree in x.

2.5 Fourier Analysis on Finite Groups

We review basic background on Fourier analysis on finite domains and specify some of

the properties of the Fourier transform. For further background, more details and some

applications see the book by Terras [90].

The Space L2(R) Let (R,+, ·) be a finite ring and denote by G := (R,+) the corre-

sponding additive abelian group. We are interested in the set of functions L2(R) := {f :

R → C}. The set L2(R) is a vector space over C of dimension |R| = |G|, with the usual

pointwise addition and scalar multiplication of functions. To see this, consider the set of

Kronecker delta functions
{
δi(x) : R→ {0, 1}

}
i∈R given by

δi(j) =

1 if i = j,

0 otherwise,

which forms a basis for L2(R) as any function f : R → C can be written as f(x) =∑
i∈R f(i)δi(x).

Let f, g ∈ L2(R). Inner product in L2(R) is given by 〈f, g〉 := 1
|R|
∑

x∈R f(x)g(x),

where z denotes the complex conjugate of z ∈ C. The inner product induces the L2 norm

‖f‖2 :=
√
〈f, f〉. The infinity norm is ‖f‖∞ := maxx∈R |f(x)|. Convolution is defined by

(f ∗ g)(x) := 1
|R|
∑

y∈R f(x− y)g(y).

Characters A character of G is a group homomorphism taking values in the non-zero

complex numbers, namely χ : G→ C∗ such that χ(x+y) = χ(x)χ(y). Denote n successive

additions of an element x ∈ G by nx. By Lagrange’s theorem |G|x = 0G, where 0G is the

identity in G. We get χ(x)|G| = χ(|G|x) = χ(0G) = 1. It follows that the characters take

values in the complex |G|-th roots of unity.

15

Let Ĝ be the set of characters of G. The cardinality of Ĝ, which equals to the number

of |G|-th roots of unity in C∗, is |G|. The set Ĝ along with pointwise multiplication

(χ1 · χ2)(x) = χ1(x)χ2(x) form a group; the inverse χ−1, defined by χ−1(x) = χ(x)−1, is

the complex conjugate χ. The groups (G,+) and (Ĝ, ·) are isomorphic. Therefore, we

can index the characters by the elements of G. That is, once an isomorphism G→ Ĝ is

chosen, denote it by α 7→ χα.

The characters satisfy the following orthogonality relations

∑
x∈G

χ(x) =

|G| if χ is the identity in Ĝ,

0 otherwise;

∑
χ∈Ĝ

χ(x) =

|G| if x = 0,

0 otherwise.

For the group G = ZN1 × · · · × ZNm and α, x ∈ G, where α = (α1, . . . , αm) and

x = (x1, . . . , xm), the character χα is given by χα(x) = e
2πi
N1

α1x1 · · · e
2πi
Nm

amxm . In particular

forG = Zp we have χα(x) = e
2πi
p
αx; for R = Zmp with dot product we have χα(x) = e

2πi
p
α·x.

We denote the N -th root of unity e
2πi
N by ωN .

Fourier Transform and Fourier Basis The (discrete) Fourier transform over L2(R)

is the function F : L2(R)→ L2(R) such that F(f) = f̂ where

f̂(α) := 〈f, χα〉 =
1

|G|
∑
x∈G

f(x)χα(x) .

The inverse Fourier transform over L2(R) is the function F−1 : L2(R)→ L2(R) such that

F−1(g)(x) :=
∑
α∈G

g(α)χα(x) .

It follows that

F−1(F(f))(x) =
∑
α∈G

f̂(α)χα(x) =
∑
α∈G

〈f, χα〉χα(x) = 〈f,
∑
α∈G

χαχα〉(x) = f(x) ,

using χχ ≡ 1 and the orthogonality relations above. In particular we see that

f(x) =
∑
α∈G

f̂(α)χα(x) ,

and so the set of characters Ĝ is a basis for L2(R), called the Fourier basis.

As opposed to the “local” Kronecker delta, the Fourier coefficient f̂(α) contains in-

formation about the function f at every point. In particular, the magnitude of f̂(α)

measures the correlation of f with χα.

16

Parseval’s Identity and Properties of the Fourier Transform Parseval’s identity

is the following:
1

|G|
∑
x∈G

∣∣f(x)
∣∣2 = ‖f‖2

2 =
∑
α∈G

∣∣f̂(α)
∣∣2.

Let R = ZN1 × · · · × ZNm with componentwise addition and multiplication. Suppose

f, g ∈ L2(R). The Fourier transform admits the following properties:

� scaling: if g(x) := f(cx) for c ∈ R∗, then ĝ(α) = f̂(c−1α);

� shifting: if g(x) := f(c+ x) for c ∈ R, then ĝ(α) = f̂(α)χα(c);

� convolution-multiplication duality: f̂ ∗ g(α) = f̂(α)ĝ(α).

The scaling property is fundamental for some of the results that will be presented

later. For completeness we present its proof:

Suppose g(x) := f(cx) for some invertible element c ∈ R. Clearly c is not a zero divisor

since if there exists 0 6= d ∈ R such that cd = 0 then d = c−1cd = c−10 = 0. By definition

of the Fourier transform

ĝ(α) =
1

|G|
∑
x∈G

g(x)χα(x) =
1

|G|
∑
x∈G

f(cx)χα(x) .

Notice that the change of variable x′ := cx permutes R. Indeed, suppose for contradiction

that there exists y 6= z ∈ R such that cy = cz, then c(y − z) = 0 so c is a zero divisor.

Therefore,

ĝ(α) =
1

|G|
∑
x′∈G

f(x′)χα(c−1x′) =
1

|G|
∑
x′∈G

f(x′)e
− 2πi
N1

α1(c−1
1 x′1) · · · e−

2πi
Nm

αm(c−1
m x′m)

=
1

|G|
∑
x′∈G

f(x′)e
− 2πi
N1

(α1c
−1
1)x′1 · · · e−

2πi
Nm

(αmc
−1
m)x′m =

1

|G|
∑
x′∈G

f(x′)χαc−1(x′)

= f̂(c−1α) .

The shifting property is proved very similarly: suppose g(x) := f(c + x) for some

c ∈ R. Then,

ĝ(α) =
1

|G|
∑
x∈G

g(x)χα(x) =
1

|G|
∑
x∈G

f(c+ x)χα(x) .

Notice that the change of variable x′ := c+ x permutes R. Therefore,

ĝ(α) =
1

|G|
∑
x′∈G

f(x′)χα(x′ − c) =
1

|G|
∑
x′∈G

f(x′)χα(x′)χα(−c) = f̂(α)χα(c) .

17

2.6 Diffie–Hellman Key Exchange

Public key cryptography emerged from the seminal paper of Diffie and Hellman [28].

They developed a key exchange scheme that allows any two parties to share a secret

key over a public communication channel. This section describes the Diffie–Hellman key

exchange and several of its variants that were developed throughout the years.

The Discrete Logarithm Problem Underlies the security of Diffie–Hellman key ex-

change is the discrete logarithm problem. Let (G, ·) be a group and let g, h ∈ G such

that h = ga for some integer a. The discrete logarithm problem (DLP) is to compute

a. In our groups of interest exponentiation is easy to compute, so it is easy to generate

instances of DLP.

We begin with a general description of Diffie–Hellman key exchange in an abstract

abelian group (G, ·). We let g ∈ G of order n, and use exponentiation to denote succes-

sive multiplication of an element by itself, as usual. We let Alice and Bob be the two

communicating parties. The values g,G are public information, i.e. known by any third

party. The Diffie–Hellman key exchange protocol proceeds as follows:

1. Alice chooses a random integer a ∈ [1, n], computes A = ga and sends A to Bob.

2. Bob chooses a random integer b ∈ [1, n], computes B = gb and sends B to Alice.

3. Alice computes Ba = (gb)a = gab.

4. Bob computes Ab = (ga)b = gab.

Both parties obtain the element gab, called the Diffie–Hellman key. It is clear that the

hardness of the discrete logarithm problem in G is necessary to make the computation

of gab infeasible for third parties. However, it is not known whether it is a sufficient

condition.

Diffie–Hellman Problems Underlying the security of Diffie–Hellman key exchange

it the following problem, known as the computational Diffie–Hellman (CDH) problem:

given a group (G, ·), an element g ∈ G and the values ga, gb, compute gab. DLP is stronger

than CDH in the sense that a solution to DLP also gives a solution to CDH. Whether

CDH is stronger than DLP is yet undecided. Certain cases require the weaker decisional

Diffie–Hellman (DDH) problem: given a group (G, ·), an element g ∈ G and a triple

(ga, gb, gc), decide whether gc = gab.

We describe variants of Diffie–Hellman key exchange in some specific groups.

18

2.6.1 Prime Fields

Diffie–Hellman in Z∗p The original proposal by Diffie and Hellman takes place in Z∗p
where g ∈ Z∗p is taken to be a primitive element. In general there is no need to take

g to be a primitive element, but any element for which DLP in 〈g〉 is supposed to be

hard. Alice and Bob agree on a prime p and an element g ∈ Z∗p. The Diffie–Hellman key

exchange protocol proceeds as follows:

1. Alice chooses a random integer a ∈ [0, p−2], computes A = ga and sends A to Bob.

2. Bob chooses a random integer b ∈ [0, p−2], computes B = gb and sends B to Alice.

3. Alice computes Ba = (gb)a = gab.

4. Bob computes Ab = (ga)b = gab.

Diffie–Hellman in E(Fp) Using elliptic curves for cryptography, known as elliptic

curve cryptography, was proposed by Miller [65] and Koblitz [52]. The group of elliptic

curves points over a prime field can be taken as the underlying group in Diffie–Hellman

key exchange. The parties agree on some prime p, an elliptic curve E(Fp) with some

specific representation and a point Q ∈ E of order n. The protocol proceeds as above.

2.6.2 Extension Fields

Both of the previous schemes naturally extend to the case where the ground field is non-

prime. In the former, one takes the multiplicative group F∗q of any finite field, and in the

latter one defines the curve over an extension field Fq. We describe schemes that make

use of this greater generality. The brilliant idea of combining these groups leads to key

exchange between three parties.

Tripartite Diffie–Hellman Joux [50] proposed the following scheme that allows three

parties Alice, Bob and Charlie to have a one-round key share, similar to the case of two

parties. The parties agree on some prime p, an integer m, a pairing-friendly elliptic curve

E(Fpm), a paring em : E[m]×E[m]→ µm and two independent points P,Q ∈ E[m] (such

that em(P,Q) 6= 1 ∈ F∗pm). The protocol is similar to the one above where Alice, Bob

and Charlie publish respectively

(AP , AQ) = ([a]P, [a]Q), (BP , BQ) = ([b]P, [b]Q), (CP , CQ) = ([c]P, [c]Q)

where a, b, c, are their secret keys, respectively. They proceed as follows to have the

shared key em(P,Q)abc ∈ F∗pm :

19

1. Alice computes em(BP , CQ)a = em(CP , BQ)a = (em(P,Q)bc)a = em(P,Q)abc.

2. Bob computes em(AP , CQ)b = em(CP , AQ)b = (em(P,Q)ac)b = em(P,Q)abc.

3. Charlie computes em(AP , BQ)c = em(BP , AQ)c = (em(P,Q)ab)c = em(P,Q)abc.

The following schemes are known as part of trace-based cryptography and torus-based

cryptography. In fact, the underlying group is Gq,n ⊆ F∗qn and the main idea is to represent

elements in this group by some other algebraic notions that give a shorter representation

than the n log(q) bits needed in general. The benefit of working specifically with Gp,n is

that any element of Gp,n of order greater than n does not lie in any proper subfield of

Fpn . Thus from the point of view of DLP the group Gp,n is the “hardest part” of F∗pn .

This means that even though one works in a subgroup of F∗pn , the security obtained is

against attacks on the full group F∗pn (this is not true if one works in Gq,n ⊆ F∗qn for a

non-prime q, as shown by Granger and Vercauteren [43] for Tn(Fq)). Additional benefits

are that one can make arithmetic computations using the short representation directly

and that the “compressed” representations allow to transmit elements of F∗pn using only

ϕ(n) log(p) bits. Therefore, the factor n/ϕ(n) is of interest, and the most useful n’s to

consider are elements of the sequence

1, 2, 2 · 3 = 6, 2 · 3 · 5 = 30, 2 · 3 · 5 · 7 = 210, . . .

LUC and XTR Diffie–Hellman In trace-based cryptography we consider two finite

fields K ⊂ L, where L = Fqn is a degree-n field-extension of K = Fq, the field trace

function TrL/K : L → K and the group Gq,n. The parties agree on a field K = Fq, an

extension L = Fqn to the field K and an element g ∈ Gq,n. The Diffie–Hellman key

exchange protocol proceeds as follows:

1. Alice chooses a random integer a ∈ [1, |Gq,n|], computes A = Tr(ga) and sends A to

Bob.

2. Bob chooses a random integer b ∈ [1, |Gq,n|], computes B = Tr(gb) and sends B to

Alice.

3. Alice computes Tr((gb)a) = Tr(gab).

4. Bob computes Tr((ga)b) = Tr(gab).

The computation of the function Tr(g) 7→ Tr(gx), which uses ladder methods, is the crux

of these cryptosystems.

20

Trace-based cryptography was initiated by Smith and Skinner [86], who proposed

using Lucas sequences to perform arithmetic operations on groups of size p + 1 (like

Gp,2) in a cryptosystem called LUC. Efforts to generalise this approach took place in [13]

(based on results from [91]) which eventually led to the XTR cryptosystem [57] (which

takes place in Gp,6; see also [58]); another proposal is the cubic field system [38] (which

takes place in Gp,3).

Since LUC and XTR admit optimal compression factors they received the most at-

tention in the literature. We refer to [87, Capter 4] for more information on these cryp-

tosystems and to [31, Chapter 6] for details on the ladder methods that allow to perform

computations on the trace.

Algebraic Torus Diffie–Hellman Torus-based cryptography was initiated by Rubin

and Silverberg [73] (see also [74, 75]), where they introduce the Tn-cryptosystems. The

group Gq,n is taken as the underlying group in Diffie–Hellman key exchange, and since

it is isomorphic to the algebraic torus Tn one can represent its (regular) elements in Am,

where m = ϕ(n), if Tn is rational. The parties agree on a field Fq, an algebraic torus

Tn(Fq) that has an explicit rational parametrization, and a regular point g ∈ Am. The

protocol proceeds as above.

We remark that in practice computing ga, gb, gab is not done directly in Am using

the partial group law, since the latter involves division in Fq (which is an “expensive”

operation), and so for a uniformly random exponent x one needs about log(q) divisions.

Instead, the operations are usually done in Gq,n, where one uses the birational maps

to switch between the representations; see [73, Section 6] for a detailed overview of the

protocol in practice.

2.6.3 Supersingular Isogeny Diffie–Hellman

Using isogenies between elliptic curves for public-key cryptography was first considered

in the unpublished, though deep, work of Couveignes [24]. First key exchange using

isogenies was proposed in the unpublished work of Rostovtsev and Stolbunov [72] and

then in the published work of the latter [89]. These proposals considered ordinary elliptic

curves, where composition of isogenies is commutative. However, they have been shown

to be vulnerable to quantum computers, as this commutative operation can be exploited

by a quantum algorithm to break the system in subexponential time [22]. As these

schemes lost their cryptographical appeal, we do not elaborate on them; however, our

result also holds for them. An alternative approach is to use supersingular elliptic curve,

where composition of isogenies is not commutative. A cryptosystem of this kind was

proposed by Jao and De Feo [47], and its key exchange, known as supersingular isogeny

21

Diffie–Hellman key exchange is a subject to our research.

The Supersingular Isogeny Problem Given two isogeneous supersingular elliptic

curves E1, E2 defined over Fq, compute an isogeny φ : E1 → E2.

This problem does not known to admit any solution in time less than exponential.

On the other hand, given E and a subgroup G ⊆ E, Vélu’s formulas can be used to

efficiently compute a representation of the curve E ′ := E/G and the isogeny φ : E → E ′.

We remark that a stronger problem is used in the cryptosystem: computing an isogeny

of a given degree. However, more information is given as we explain.

Key Exchange Protocol Alice and Bob agree on a prime of the form p = `nA`
m
Bf ±

1, where `A, `B are small primes such that `nA ≈ `mB and f is small, a supersingular

elliptic curve E(Fp2) with some specific representation and two pairs PA, QA ∈ E[`nA] and

PB, QB ∈ E[`mB] of independent points (the group 〈PA, QA〉 generated by PA and QA has

(full) order `2n
A , and similarly, |〈PB, QB〉| = `2m

B).

The supersingular isogeny Diffie–Hellman key exchange protocol proceeds as follows:

1. Alice chooses random integers 0 ≤ a1, a2 < `nA, not both divisible by `A, computes

GA := 〈[a1]PA + [a2]QA〉 and an isogeny φA from E with kernel GA. She then

obtains the curve EA = φA(E) = E/GA and the points φA(PB), φA(QB) on it, and

sends this triple to Bob.

2. Bob chooses random integers 0 ≤ b1, b2 < `mB , not both divisible by `B, computes

GB := 〈[b1]PB+[b2]QB〉 and an isogeny φB from E with kernel GB. He then obtains

the curve EB = φB(E) = E/GB and the points φB(PA), φA(QA) on it, and sends

this triple to Alice.

3. Alice computes φB(GA) = 〈φB([a1]PA + [a2]QA)〉 = 〈[a1]φB(PA) + [a2]φB(QA)〉 and

an isogeny fromEB with kernel φB(GA). She then obtains the curveEB/〈φB(GA)〉 =

E/〈GA, GB〉 and computes its j-invariant.

4. Bob computes φA(GB) = 〈φA([b1]PB+[b2]QB)〉 = 〈[b1]φA(PB)+[b2]φA(QB)〉 and an

isogeny from EA with kernel φA(GB). He then obtains the curve EA/〈φA(GB)〉 =

E/〈GA, GB〉 and computes its j-invariant.

Both parties obtain the curve EAB := E/〈GA, GB〉. It is not guaranteed that they use

the same representation of the curve, so using the j-invariant guarantees they share the

same value. The protocol revolves around the following commutative diagram:

22

E

E/GA

E/GB

E/〈GA, GB〉

φA

φB

Notice that the underlying problem (for an adversary) is to compute a specific isogeny

from E to EA (or EB). Indeed, given φB(PA), φB(QA), the adversary needs to know a1, a2

in order to compute EB/〈φB(GA)〉. These values cannot be obtained in general from any

isogeny from E to EA, see [35, Section 4.1]. In fact, φA itself is only being used to compute

the auxiliary points φA(PB), φA(QB). On the other hand, the auxiliary points give more

structure that may be exploited to break the scheme.

23

Chapter 3

Sets of Large Fourier Transform

The usefulness of representing a function by the Fourier basis comes from the coefficients

f̂(α). As mentioned above the Fourier coefficient f̂(α) allows to measure how much a

function f is correlated with a character χα. This chapter is dedicated to the analysis of

functions that have a high correlation with one or a few characters. We start with basic

definitions and some elementary results, which are an original contribution. Section 3.2

presents a very strong tool that allows to locate those Fourier coefficients with high cor-

relation to some characters. Section 3.3 gives examples of functions with this property

and presents a method to prove that a function has (or does not have) a high correla-

tion with some characters; we use this method to reprove that every single-bit function

admits this high-correlation property. In section 3.4 we describe a class of functions, of

significant interest, with no high correlations to any character. Some of the notions that

are presented in this chapter are used in Chapter 6.

3.1 Definitions and Elementary Results

In this section we present some basic notions of functions and their Fourier expansion,

and generalise the scaling property of the Fourier transform to the multivariate case. The

following definitions consider functions on G, but can be made for functions over rings R

where G is their additive group.

Definition 3.1 (τ -heavy coefficient). Let f : G → C be a function, f =
∑

α∈G f̂(α)χα,

and let τ > 0. The coefficient f̂(α) is τ -heavy if
∣∣f̂(α)

∣∣2 ≥ τ . The set of all τ -heavy

Fourier coefficients of f is represented by Heavyτ (f) := {α ∈ G |
∣∣f̂(α)

∣∣2 ≥ τ}.

Parseval’s identity ensures that the cardinality of Heavyτ (f) is at most ‖f‖2
2/τ . In-

deed,
∑

α∈G

∣∣f̂(α)
∣∣2 = ‖f‖2

2 = (‖f‖2
2/τ)τ . The cases of interest are for sufficiently large

τ , such that the amount of τ -heavy coefficients is “small”, as we explain below.

24

Definition 3.2 (k-sparse function). A function f : G→ C is k-sparse if f̂(α) is non-zero

for at most k elements α ∈ G.

Definition 3.3 (Restriction). Given a function f : G→ C and a set of characters Γ ⊆ Ĝ,

the restriction of f to Γ is the projection of f onto the subspace span{χα ∈ Γ}; that is

f |Γ : G→ C is defined by f |Γ :=
∑

χα∈Γ f̂(α)χα.

Definition 3.4 (ε-concentration). Let ε > 0 be a real number. A family of functions

{fi : Gi → C}i∈N is Fourier ε-concentrated if there exists a polynomial P and sets of

characters Γi ⊆ Ĝi such that |Γi| ≤ P (log |Gi|) and ‖fi − fi|Γi‖2
2 ≤ ε for all i ∈ N.

Definition 3.5 (Concentration). A family of functions {fi : Gi → C}i∈N is Fourier

concentrated if there exists a polynomial P and sets of characters Γi ⊆ Ĝi such that

|Γi| ≤ P (log |Gi|/ε) and ‖fi − fi|Γi‖2
2 ≤ ε for all i ∈ N and for all ε > 0.

Most applications are concerned with a single function that implicitly defines the

entire family. In this case we say that the function, instead of the family, is concentrated

or ε-concentrated. In this asymptotic case, we omit τ and say that a coefficient f̂(α)

is heavy if ‖f‖2
2/τ is bounded by some polynomial (in log(|G|)). This implies that a

function can only have polynomially many heavy coefficients. The simplest example of a

concentrated function is a single character.

The scaling and shifting properties show that if f, g : R → C such that g(x) =

(f ◦ ϕ)(x) for some affine function ϕ : R → R, then we can easily represent the Fourier

transform of g using the Fourier transform of f . We give a natural generalisation of this

property for the multivariate case.

Lemma 3.6 (Multivariate scaling property). Let f : Zp → C, let s = (s1, . . . , sm) ∈ Zmp
such that not all si = 0, and define fs : Zmp → C by fs(x) := f(s · x). For any sk 6= 0,

the Fourier transform of fs satisfies

f̂s (z) = f̂s(z1, . . . , zm) =

{
f̂(c) if (z1, . . . , zm) = (cs1, . . . , csm), c ∈ Zp ;

0 otherwise.
(3.1)

Proof. Recall that a character in Zp is defined by χa(x) = e
2πi
p
ax and that for an element

a = (a1, . . . , am) ∈ Zmp the character χa(x) is given by χa(x) =
∏m

i=1 χai (xi). Therefore,

for 1 ≤ k ≤ m, we have

χ(a1,...,am) (x1, . . . , xm) =
m∏
i=1

χai (xi) =
∏
i 6=k

χai (xi)χak (xk)

= χ(a1,...,ak−1,ak+1,...,am)(x1, . . . , xk−1, xk+1, . . . , xm)χak(xk) .

25

Assume without loss of generality that sm 6= 0. Then,

f̂s (z) =
1

pm

∑
(x1,...,xm)∈Zmp

fs (x1, . . . , xm)χ(z1,...,zm) (x1, . . . , xm)

=
1

pm

∑
x1,...,xm∈Zp

f (s1x1 + · · ·+ smxm)χ(z1,...,zm) (x1, . . . , xm)

=
1

pm

∑
x1,...,xm−1

∑
xm

f (s1x1 + · · ·+ smxm)χ(z1,...,zm−1) (x1, . . . , xm−1)χzm (xm)

=
1

pm

∑
x1,...,xm−1

χ(z1,...,zm−1) (x1, . . . , xm−1)
∑
xm

f (s1x1 + · · ·+ smxm)χzm (xm) .

Since x′m := smxm is a permutation of Zp, we change the order of summation and sum

over x′m, and express f̂s (z) by

1

pm

∑
x1,...,xm−1

χ(z1,...,zm−1) (x1, . . . , xm−1)
∑
x′m

f
(
s1x1 + · · ·+ sm−1xm−1 + x′m

)
χzm(s−1

m x′m) .

Let y := s1x1 + · · · + sm−1xm−1 + x′m, so that f (s1x1 + · · ·+ sm1xm1 + x′m) = f (y). We

get that

f̂s (z) =
1

pm−1

∑
x1,...,xm−1

χ(z1,...,zm−1) (x1, . . . , xm−1) ·

1

p

∑
y

f (y)χzm
(
s−1
m (y − s1x1 − · · · − sm−1xm−1)

)
=

1

pm−1

∑
x1,...,xm−1

χ(z1,...,zm−1) (x1, . . . , xm−1) ·

1

p

∑
y

f(y)χzms−1
m

(y)χ(−zms−1
m s1,...,−zms−1

m sm−1) (x1, . . . , xm−1)

=
1

pm−1

∑
x1,...,xm−1

χ(z1−zms−1
m s1,...,zm−1−zms−1

m sm−1) (x1, . . . , xm−1) f̂
(
zms

−1
m

)
= f̂

(
zms

−1
m

) 1

pm−1

∑
x1,...,xm−1

χ(z1−zms−1
m s1,...,zm−1−zms−1

m sm−1) (x1, . . . , xm−1) .

The last sum equals 0 unless the character χ(z1−zms−1
m s1,...,zm−1−zms−1

m sm−1) is the trivial

character in Zm−1
p , in which case it equals pm−1. Using the orthogonality relations we

get that f̂s(z1, . . . , zm) = f̂(zms
−1
m) when zj − zms

−1
m sj = 0 for all 1 ≤ j ≤ m − 1 and

otherwise f̂s(z1, . . . , zm) = 0. In the former case we get that if zms
−1
m = c for any c ∈ Zp,

then zj = csj for all 1 ≤ j ≤ m, as stated in (3.1).

Note that among the pm Fourier coefficients of fs, p
m − p of them are zero. More

26

precisely, the Fourier coefficients of fs are equal to zero outside the line (x1, . . . , xm) =

(ts1, . . . , tsm), where t ∈ Zp. Along this line the Fourier coefficients of fs are (all of) those

of f .

The multivariate scaling property shows that for functions f : Zp → C and g : Zmp → C
such that g(x) = (f ◦ ϕ)(x) where ϕ : Zmp → Zp is a linear function, one can easily

represent the Fourier transform of g using the Fourier transform of f . The generalisation

to affine ϕ is immediate and follows the proof of the shifting property in Chapter 2.

From the (univariate) scaling property it is easy to deduce that Heavyτ (g), for g(x) =

f(cx), is a permutation of Heavyτ (f). A similar result is derived from the multivariate

scaling property, as we now show.

Proposition 3.7. Let f : Zp → {−1, 1}, let s = (s1, . . . , sm) ∈ Zmp be such that not all

si = 0, and let fs : Zmp → {−1, 1} be the function fs(x) := f(s · x). Then, Heavyτ (f) =

{c1, . . . , ct} if and only if Heavyτ (fs) = {(cis1, . . . , cism) | 1 ≤ i ≤ t}. In other words, a

coefficient f̂s(z1, . . . , zm) of fs is τ -heavy if and only if there exists 1 ≤ i ≤ t such that

zj = cisj for every 1 ≤ j ≤ m and f̂(ci) is τ -heavy.

Proof. Let 1 ≤ k ≤ m such that sk 6= 0. Assume c ∈ Heavyτ (f) and consider the

vector (z1, . . . , zm) = (cs1, . . . , csm). Specifically zk = csk, so c = zks
−1
k and therefore for

every 1 ≤ j ≤ m one gets zj = csj = zks
−1
k sj or zj − zks

−1
k sj = 0. From Lemma 3.6

we get that f̂s(cs1, . . . , csm) = f̂s(z1, . . . , zm) = f̂(zks
−1
k) = f̂(c). Therefore, we get that

(cs1, . . . , csm) ∈ Heavyτ (fs). That is,

|f̂(c)|2 > τ =⇒ |f̂s(cs1, . . . , csm)|2 > τ .

Conversely,

|f̂s(z1, . . . , zm)|2 > τ =⇒ f̂s(z1, . . . , zm) 6= 0

=⇒ zj = zks
−1
k sj for every 1 ≤ j ≤ m

=⇒ zj = csj for c = zks
−1
k ∈ Zp

=⇒ f̂(c) = f̂(zks
−1
k) = f̂s(z1, . . . , zm)

=⇒ |f̂(c)|2 > τ .

That is, the coefficient f̂s(z1, . . . , zm) is τ -heavy if and only if there exists 1 ≤ i ≤ t such

that zj = cisj for every 1 ≤ j ≤ m and f̂(ci) is τ -heavy.

Corollary 3.8. Let f be a function defined over Zp, let s = (s1, . . . , sm) ∈ Zmp such that

not all si = 0, and let fs be a function over Zmp defined by fs(x) := f(s ·x). The function

f is concentrated if and only if the function fs is concentrated.

27

Proof. Let Γ be a set of characters of Zp, and define Γs := {χa | a = (as1, . . . , asm), χa ∈
Γ} ⊆ Zmp . The proof is evident, since

∑
a∈Γs
|f̂s(a)|2 =

∑
a∈Γ |f̂(a)|2.

3.2 SFT Algorithms

A standard problem is to approximate a function, to a given error term ε, by a linear

combination of a small number of characters. In the general case one can only expect that∣∣f̂(α)
∣∣2 ≈ ‖f‖2/|G| so this is not possible. Roughly speaking, an ε-concentrated function

has Fourier coefficients whose magnitude is large with respect to the function’s norm, and

a concentrated functions is a function that can be approximated, up to any error term,

using linear combinations of a small number of characters (and the corresponding Fourier

coefficients). In other words, these are functions that can approximated by k-sparse

functions for some polynomially bounded k.

Sparse, or significant, Fourier transform (SFT) algorithms are algorithms that take a

function as an input and output a sparse approximation of it; for example, they output a

set of significant (heavy) Fourier coefficients of the function. The design of such algorithms

is a big area in Learning Theory with applications in computer science and engineering,

mostly in signal processing. To date, existing SFT algorithms only need to take a small

set {f(x1), . . . , f(xn)} of function values. However, they require the ability to ask, and

receive, any value f(x). SFT algorithms that take random samples f(x) are not known

to exist, and are conjectured to be infeasible.

The Kushilevitz–Mansour algorithm [54] is a cornerstone in this research field, and

serves as a basis for most SFT algorithms. This work was extended by Mansour [62]. The

algorithm given by Akavia, Goldwasser and Safra [2] is the first to completely consider all

finite abelian groups. See [33] for a group-theoretic analysis of these algorithms, which

highlights its mathematical ideas, and [37] for a survey on the state-of-the-art algorithms.

The following theorem summarises the results from these works.

Theorem 3.9. Let G be an abelian group represented by a set of generators of known

orders. There is a learning algorithm that, given query access to a function f : G → C,

a threshold τ > 0 and δ > 0, outputs a list L of size at most 2‖f‖2
2/τ such that

� L contains all the τ -heavy Fourier coefficients of f with probability at least 1− δ;

� L does not contain coefficients that are not (τ/2)-heavy with probability at least

1− δ.

The algorithm runs in polynomial time in log
(
|G|
)
, ‖f‖∞, 1

τ
and log

(
1
δ

)
.

28

We give an overview of the algorithm’s main procedure. Afterwards we shortly explain

each step, specifically we explain the necessity of choosing the values f(x). Starting with

D = G, the algorithm proceed as follows:

� Partition D = A ∪ B (into some well-structured sets), and define the functions

fA(x) :=
∑

α∈A f̂(α)χα(x) and fB(x) :=
∑

β∈B f̂(β)χβ(x).

� Approximate the values fA(xi) and fB(yj) for polynomially many samples xi, yj,

chosen uniformly at random.

� Using the values from the previous step, approximate the norms ||fA||22 and ||fB||22.

� Using Parseval’s identity ||fA||22 =
∑

α∈A |f̂(α)|2, if the approximation of the norm

is smaller than1 τ
4/3

then with overwhelming probability f does not have a τ -heavy

coefficient in A. Hence, dismiss A. Act similarly for fB.

� Run the algorithm recursively on the remaining sets and stop when it reaches sin-

gletons.

Let us explain this procedure. For simplicity, we take G = ZN where N = 2n is some

power of 2. As the theorem states this is not necessary – the essence of the algorithm

is the behaviour of certain exponential sums over G – however it gives the most simple

presentation. Moreover, the work in [55] shows that considering groups whose domain is

a power of 2 is sufficient to get a complete SFT algorithm for any finite abelian group.

We elaborate on this work in Section 3.3.

The algorithm is recursive, and each iteration has several steps. First, the algorithm

partitions ZN = A∪B where A contains all the even elements and B contains all the odd

elements. We only focus on the set A, as everything is done similarly for B. Its aim is to

decide whether potentially there are τ -heavy coefficients f̂(α) for α ∈ A. More precisely,

given the threshold τ , the algorithm determines is there are no τ/2-heavy coefficients

f̂(α) such that α ∈ A.

Step 1. Recall that the function fA is not given as we only have access to f . In order to

get values from fA we use the convolution-multiplication duality of the Fourier transform:

f̂ ∗ h(α) = f̂(α)ĥ(α). The function h, called a filter function, is taken to satisfy

ĥA(α) =

{
1 α ∈ A,
0 otherwise.

1A lower threshold 3
4τ is needed since the algorithm only approximates the norm. As a consequence,

the final list may contain coefficients that are τ
2 -heavy but not τ -heavy.

29

We then have

f̂ ∗ hA(α) =

{
f̂(α) α ∈ A,
0 otherwise.

In other words,

f ∗ hA = fA .

The evaluation of h(x) =
∑

α∈A χα(x) can be done easily using the formula for ge-

ometric sum since A forms an arithmetic progression. Specifically, for A as above (A

contains all the even integers in ZN so the arithmetic progression is of difference 2) we

get that

hA(x) =

2n−1 if x = 0 or x = 2n−1,

0 otherwise.

One immediately sees that evaluating the characters of ZN at x = 2n−1 gives a distinction

between even and odds, as they all collapse to the characters of order 2. Indeed, we get

that

ĥA(α) =
1

2n

∑
x

hA(x)ωαx2n =
1

2

(
1 + (−1)α

)
=

{
1 α ∈ A,
0 otherwise.

Step 2. Since fA = f ∗ hA we have

fA(x) = f ∗ hA(x) =
1

|G|
∑
y∈G

f(x− y)h(y) =
1

2n
(
f(x)2n−1 + f(x− 2n−1)2n−1

)
.

Hence, to evaluate fA at some point x ∈ ZN we need the values f(x) and f(x − 2n−1).

This explains why the ability to have chosen values of the original function f is necessary.

Step 3. One approximates the norm ‖fA‖2
2 by taking sufficiently many values fA(xi) for

uniformly and independently chosen xi ∈ G. Then 1
m

∑m
i=1

∣∣f(xi)
∣∣2 ≈ ‖fA‖2

2.

Step 4. By Parseval’s identity ‖fA‖2
2 =

∑
α∈A

∣∣f̂(α)
∣∣2. The approximation from the

previous step is used to determine if there may be heavy coefficients f̂(α) with α ∈ A.

More precisely, if the norm approximation is smaller than 3τ/4, then with overwhelming

probability there are no τ -heavy coefficients f̂(α) such that α ∈ A.

Step 5. As a result of the previous step, the algorithm decides whether to discard the

set A (no τ -heavy coefficients) or to iterate where now A is partitioned into 2 sets that

differ by their residue mod 4.

Using Parseval’s identity, a simple analysis shows that the number of sets involved in

this process is small, that is the algorithm will discard most sets. The analysis is similar

to the one above which shows that the number of heavy coefficient is bounded.

30

3.3 Concentrated Functions

In this section we present some concentrated functions. The main result in this subject

is that every single-bit function is concentrated. This was first proved by Morillo and

Ràfols [67]. We conclude this section with a method to prove that a family of functions

is concentrated. As a corollary, we get a new and simpler proof to the concentration of

every single-bit function.

We already mentioned that the simplest example of a concentrated functions is a

single character, as it consists of only one non-zero coefficient. We have not given yet an

example of an ε-concentrated function, which is not concentrated. Adding some ‘noise’

to a character converts it from a concentrated function into an ε-concentrated function.

We define ‘noisy characters’ f : ZN → C by f(x) := ω
αx+e(x)
N for some random

functions e. It is very easy to see that f̂(α) is a heavy coefficient of f (see for example

[33, Section 6.1]). While in general the other coefficients are non-zero, the randomness

of e guarantees that no other coefficient is heavy, so these functions are not concentrated

(because, for example, they are not ε/2-concentrated).

A concrete example of such noisy character is the function LWEs : Znp → Zp, given by

LWEs(x) = ω
x·s+e(x)
p for e(x) drawn from a Gaussian distribution. Another example is

the function LPNs : {0, 1}n → {0, 1}, given by LPNs(x) = (−1)x·s+e(x) for e(x) ∈ {0, 1}
which is mostly 0. Let I be the set for which e(x) = 1, then L̂PNs(s) = 1

2n

∑
x/∈I 1 +

1
2n

∑
x∈I(−1) = 1− 2|I|

2n
. The function’s norm in 1 and 2|I|

2n
is expected to distribute evenly

among the other coefficients. Therefore LPNs is ε-concentrated. These examples show

that one does not expect a general learning algorithm where the function values cannot

be chosen, as it will solve the LWE and LPN problems.

Definition 3.10 (Boolean predicate). A Boolean predicate, or just a predicate, on a set

G is a Boolean-valued function P : G→ {x, y} for some x 6= y.

Definition 3.11 (Segment predicate [2, Definition 14]). Let P = {PN : ZN → {±1}} be

a family of predicates.

� A predicate PN is a basic t-segment predicate if
∣∣{x ∈ Zn | PN(x+ 1) 6= PN(x)}

∣∣ ≤
t.

� A predicate PN is a t-segment predicate if there exists a basic t-segment predicate

P ′ and a ∈ Z∗N such that PN(x) = P ′(x/a) for every x ∈ ZN .

� The set P is a family of segment predicates if for every N the predicate PN is

t(N)-segment predicate for t(N) ≤ poly(log(N)).

31

We give a few examples of families of t-segment predicates. Let 2n−1 < N ≤ 2n, we

define the i-th bit function biti : ZN → {−1, 1} by biti(x) = (−1)xi where x =
∑n−1

j=0 xj2
j

and xj ∈ {0, 1}.

Example 3.12.

� The most significant bit function bitn : ZN → {−1, 1}, where n = blog(N)c, is a

basic 2-segment predicate. Therefore, the family of most significant bit functions is

a family of segment predicates.

� More generally, for every 0 ≤ k ≤ n the function bitn−k : ZN → {−1, 1}, where

n = blog(N)c, is a basic 2k+1-segment predicate. For k ≤ log log(N) we get that

the family of functions bitn−k is a family of segment predicates, since there are at

most 2 log(N) segments.

� The function half : ZN → {−1, 1}, for which half(x) = 1 if 0 ≤ x < N
2

and

half(x) = −1 otherwise, is a basic 2-segment predicate.

� Let N be odd, then the least significant bit function bit0 : ZN → {−1, 1}, is a

2-segment predicate, since bit0(x) = half(x/2).

� More generally, for 0 ≤ k ≤ log log(N), the function bitk : ZN → {−1, 1} is a

2k+1 segment predicate, since the predicate P ′ : ZN → {−1, 1}, defined by P ′(x) =

bitk(x/2
k+1), partition ZN into at most 2k+1 segments.

A fundamental result is that a family of segment predicates is concentrated. In order

to prove this result we need the following elementary claims. Recall that we define the

modular norm by |α|N := min{α,N − α} for any α ∈ ZN .

Claim 3.13. Let N be a positive integer, let ωN := e
2πi
N and let k ∈ N. Define

Sα,K =
K−1∑
x=0

ωαxN .

Then for any α ∈ Z∗N ∣∣Sα,K∣∣2 ≤ N2

|α|2N
(
π2 − π4

12

) < N2

|α|2N
.

Proof. Since Sα,K is a sum of a geometric series, we have

Sα,K =
ωαKN − 1

ωαN − 1
=

(cos(2παK/N)− 1) + i sin(2παK/N)

(cos(2πα/N)− 1) + i sin(2πα/N)
.

32

Therefore, ∣∣Sα,K∣∣2 =
1− cos(2παK/N)

1− cos(2πα/N)
≤ 2

1− cos(2πα/N)
.

Using x2

2
(1 − x2

12
) ≤ 1 − cos(x) ≤ x2

2
and the fact that cos(x) = cos(−x) (for the case

α = N − |α|N) we get that

∣∣Sα,K∣∣2 ≤ 2
4π2|α|2N

2N2

(
1− 4π2|α|2N

12N2

) ≤ N2

|α|2N
(
π2 − π4

12

) .

Lemma 3.14 ([2, Claim 4.1]). Let ε > 0. For a basic t-segment predicate P : ZN → {±1},
P is concentrated within ε on Γ = {χα | |α|N ≤ O(t2/ε)}, i.e.

‖P |{χα||α|n>O(t2/ε)}‖2
2 ≤ ε .

Proof. First, suppose that P is a 2-segment predicate. That is, there exists a segment I

such that P (x) = 1 for x ∈ I, and P (x) = −1 for x 6∈ I. Therefore

∣∣P̂ (α)
∣∣ =

∣∣∣ 1

N

∑
x∈Zn

P (x)χ−α(x)
∣∣∣ =

1

N

∣∣∣∑
x∈I

χ−α(x)−
∑
x 6∈I

χ−α(x)
∣∣∣

≤ 1

N

∣∣∣∑
x∈I

χ−α(x)
∣∣∣+

1

N

∣∣∣∑
x 6∈I

χ−α(x)
∣∣∣ .

Clearly, each of these sums can be expressed as the difference of two sums of the form

Sα,K where K takes the values of the end points of I. Using Claim 3.13 we get that∣∣P̂ (α)
∣∣ < O(1/‖α|N).

Now, let P be a basic t-segment predicate. The predict P partitions ZN into t (dis-

tinct) segments Ij, such that P is constant on Ij. One can express P as P = t−1+
∑t

j=1 Pj

where each predicate Pj : ZN → {±1} is given byP (x), if x ∈ Ij,

−1, otherwise.

Since each Pj is a basic 2-segment predicate we get that for any α ∈ Z∗N

∣∣P̂ (α)
∣∣ =

∣∣∣ t∑
j=1

P̂j(α)
∣∣∣ ≤ O

(
t

|α|n

)
.

33

Finally, ∑
|α|N>k

∣∣P̂ (α)
∣∣2 ≤ O(t2)

∑
|α|N>k

1

|α|2N
< O

(
t2

k

)
.

Therefore, for every ε > 0,

‖P |{χα||α|N>O(t2/ε)}‖2
2 ≤ ε .

Corollary 3.15. Let P : ZN → {±1} be a t-segment predicate, then P is concentrated.

Proof. Let ε > 0. If P is a basic t-segment predicate we are done. Otherwise, there exist

a basic t-segment predicate P ′ : ZN → {±1} and a ∈ Z∗N such that P (x) = P ′(x/a)

for every x ∈ ZN . From the scaling property of the Fourier transform P̂ (α) = P̂ ′(αa).

Since P ′ is a basic t-segment predicate, it is concentrated within ε on Γ′ = {χα | |α|N ≤
O(t2/ε)}. Therefore P is concentrated within ε on Γ = {χαa−1 | |α|N ≤ O(t2/ε)}

Corollary 3.16. Let 0 ≤ k ≤ log log(N), then the functions bitk : ZN → {−1, 1} and

bitn−k : ZN → {−1, 1} , where n = blog(N)c, are concentrated.

3.3.1 The Concentration of All Single-bit Functions

While segment predicates can be used to show the concentration of “outer bits” functions,

their usefulness in proving that all single-bit functions are concentrated is not clear. The

latter was proved by Morillo and Ràfols [67], where instead of giving a general argument,

like the one that uses segment predicates, they analyse the Fourier coefficients of each

function biti. This work is quite complicated and requires analysing several different

cases.

The following presents a general technique to prove that a family of functions is

concentrated by considering only a subfamily. The main result is Theorem 3.20. As a

corollary we get a new and simpler proof for the concentration of all single-bit functions.

Full details and proofs of the ideas that are presented in this section can be found in the

work of Joel Laity with the author of this thesis [55].

The key observation of this new approach is that while the characters in the Fourier

basis of L2(Zn) consists of n-th roots of unity, “embedding” functions of L2(Zn) in other

vector spaces L2(Zm) almost does not change the behaviour of their Fourier coefficients.

Definition 3.17. Let m,n ∈ N. Let f : Zn → C. Define f̃ : Zm → C by

f̃(x) =

f(x) when 0 ≤ x < min(n,m),

0 otherwise.

34

The main result of [55] is that if a function f : Zn → C has large Fourier coefficients,

then also f̃ : Zm → C has large Fourier coefficients. Moreover, there is a simple relation

between the sets of large Fourier coefficients of both functions: roughly speaking, if f̂(α)

is heavy then there is a heavy coefficient
̂̃
f (β) for β in a small neighbourhood around

bm
n
αe. We have the following theorems from [55].

Theorem 3.18. Let {nk}k∈N, {mk}k∈N be two sequences of positive integers with mk ≥
nk/2 for every k ∈ N. Let Q ∈ R[x] be a polynomial. Let {fk : Znk → C}k∈N be

a concentrated family of functions such that ‖fk‖2
2 ≤ Q(log(nk)) for all k ∈ N. Then

{f̃k : Zmk → C}k∈N is a concentrated family of functions.

Theorem 3.19. Let {nk}k∈N, {mk}k∈N be two sequences of positive integers with mk ≥
nk/2 for every k ∈ N. Let t := supk∈N{nk/mk}. Let Q ∈ R[x] be a polynomial. Let

{fk : Znk → C}k∈N be a family of functions such that ‖fk‖2
2 ≤ Q(log(nk)) for all k ∈ N.

Then if {fk : Znk → C}k∈N is an ε-concentrated family of functions, the family {f̃k :

Zmk → C}k∈N is a (tε+ η)-concentrated family of functions for any η > 0.

We see that a concentrated function f remains concentrated even if f̃ is defined

over a smaller domain. This is somewhat surprising, as some information about f is

lost, however, roughly speaking, since a concentrated function “behaves” like a linear

combination of a small set of characters, this behaviour also holds on the smaller domain.

This property allows us to prove the following theorem.

Theorem 3.20. Consider a family of functions F = {f2k : Z2k → C}k∈N and define the

family F ′ = {fn : Zn → C}n∈N, where for each 2k−1 < n ≤ 2k we let fn(x) := f2k(x) for

every x ∈ Zn. If F is concentrated then F ′ is concentrated.

Proof. Consider the family G = {gn : Zmn → C}n∈N where for each 2k−1 < n ≤ 2k we

let mn = 2k and define gn := f2k . Suppose that F is concentrated, then since G and

F contain the same functions, G is concentrated (with the same polynomial for which

F is concentrated). Note that for each n, we have that fn = g̃n with 1 ≤ n
mn

< 2.

From Theorem 3.18, since {gn : Zmn → C}n∈N is concentrated it follows that {fn : Zn →
C}n∈N = {g̃n : Zn → C}n∈N is concentrated.

Applying this result, one can prove that the i-th bit function (over all domain Zn) is

concentrated by showing that the family of the i-th bit function on domains of the form

Z2k is concentrated, that is, that {biti : Z2k → {−1, 1}}i<k∈N is concentrated. The latter

can be easily proven using the structure of these functions under these domains. This is

summarised in the following lemma.

35

Lemma 3.21. Let k ∈ N, let 0 ≤ i < k, and define biti : Z2k → {−1, 1} by biti(x) =

(−1)xi where x =
∑k−1

j=0 xj2
j and xj ∈ {0, 1}. Let α ∈ Z2k , then b̂iti(α) = 0 unless α is

an odd multiple of 2k−i−1, in which case |b̂iti(α)| = O(2k−i/|α|2k).

Proof. Writing N = 2k we have b̂iti(α) = 1
N

∑2k−1
x=0 biti(x)ω−αxN . We write x = y + 2ib +

2i+1z where 0 ≤ y < 2i, 0 ≤ z < 2k−(i+1) and b is the i-th bit. Then

b̂iti(α) =
1

N

2i−1∑
y=0

ω−αyN

 1∑
b=0

(−1)bω−α2ib
N

2k−i−1−1∑
z=0

ω−2i+1αz
N

=

1

N

2i−1∑
y=0

ω−αyN

(1− ω−2iα
N

)2k−i−1−1∑
z=0

ω−2i+1αz
N

 .

The third sum is just a sum over all 2k−i−1-th roots of unity, so it is 2k−i−1 when α is a

multiple of 2k−i−1 and otherwise is zero. The middle term (1−ω−2iα
N) is therefore 2 when

α is an odd multiple of 2k−i−1 and is zero if it is an even multiple. For the first sum, we

know from Claim 3.13 that ∣∣∣∣∣
2i−1∑
y=0

ω−αyN

∣∣∣∣∣ < N

|α|N
. (3.2)

The result then follows: the Fourier coefficient b̂iti(α) is zero when α is not an odd

multiple of 2k−i−1 and when it is non-zero it has magnitude bounded by 2k−i/|α|2k .

This shows that biti is concentrated on characters which are indexed by multiplies of

2k−i−1 of small norm.

Corollary 3.22. For every i ∈ N, the i-th bit function over domains Z2k , i.e. {biti :

Z2k → {−1, 1}}k>i, is concentrated.

Proof.

∑
|α|

2k
>d2k−i−1

∣∣b̂iti(α)
∣∣2 ≤ ∑

|α|
2k
>d2k−i−1

O

(
2k−i

|α|2k

)2

=
∑

|α|
2k
>d2k−i−1

O

(
2k−i

|β2k−i−1|2k

)2

=
∑

2i+1>|β|
2k
>d

O

(
4

|β|2
2k

)
< O

(
4

d

)
.

Therefore, for every ε < 0,

‖biti|{χα | |α|2k>O(2k−i+1/ε)}∪{χα |α - 2k−i−1}‖2
2 ≤ ε .

36

Applying Theorem 3.20 we get the following.

Corollary 3.23. For every i ∈ N, the i-th bit function {biti : Zn → {−1, 1}}n>2i is

concentrated.

3.4 Non-concentrated Functions

The scaling property of the Fourier transform shows that if f, g : R → C such that

g = f ◦ ϕ and ϕ : R → R is an invertible linear function, then the Fourier coefficients

of g are a permutation of the Fourier coefficients of f . Moreover, a similar result holds

for g : Rm → C and ϕ : Rm → R using the multivariate scaling property (Lemma 3.6).

An immediate corollary is that f is concentrated if and only if g is concentrated. Indeed,

both functions have the same Fourier coefficients in different order (in the generalised

case, the additional coefficients are zero). The same results hold if we set ϕ to be an

affine function.

A natural question is whether there are other operations ϕ for which both f, g are

concentrated or ε-concentrated. It is clear that if f is a constant function then also g

is constant (and they are both concentrated). Degenerate cases of functions which are

constant almost everywhere are not of interest. We focus on functions which are far from

constant, which we formalise in our proof by requiring that f̂(0) = 0 (in other words, f

is “balanced”). In addition, we restrict to the case where ϕ is a rational function.

Our result uses bounds of exponential sums involving rational functions. We make

use of following lemma, which is a special case of [66, Theorem 2]).

Lemma 3.24. Let p be prime. For any polynomials f, g ∈ Fp[x] such that the rational

function h = f
g

is not constant in Fp, the following bound holds∣∣∣∣∣ ∑
λ∈Fp

∗ωh(λ)
p

∣∣∣∣∣ ≤ (max{deg(f), deg(g)}+ u− 2)
√
p+ δ ,

where
∑∗ means that the summation is taken over all λ ∈ Fp which are not poles of h

and

(u, δ) =

{
(v, 1) if deg(f) ≤ deg(g),

(v + 1, 0) if deg(f) > deg(g),

and v is the number of distinct zeros of g in the algebraic closure of Fp.

We formulate the following result for functions on Zp for a prime p, but it can be

generalised to finite fields Fpm with m > 1. Let g, h ∈ Zp[x] be polynomials where h is

not the constant zero. Let Zh be the set of zeroes in Zp of h. We define ϕ(x) = g(x)/h(x)

37

for all x ∈ Zp \ Zh and ϕ(x) = 0 otherwise (since we will assume Zh is small compared

with p it does not matter how we define ϕ on Zh).

Proposition 3.25. Let p be a sufficiently large prime. Let f be a concentrated function

on Zp such that ‖f‖2 = 1 and f̂(0) = 0. Let g, h ∈ Zp[x] be polynomials of degree bounded

by poly(log(p)) and let Zh be the set of zeroes of h. Define ϕ(x) as above and suppose

this function is non-constant. Let τ = 1/poly(log(p)). If f ◦ ϕ has any τ -heavy Fourier

coefficients then ϕ(x) = ax+ b for some a, b ∈ Zp.

Proof. Let G = Zp and write f =
∑

α∈G f̂(α)χα. Let d = max{deg(g(x)), deg(h(x))}.
Let ε = τ

32d2
. Since f is concentrated there is a set Γ of size poly(log(|G|)) such that

‖f − f |Γ‖2
2 ≤ ε =

τ

32d2
.

Since f̂(0) = 0 it follows that Γ does not contain zero.

Now consider fϕ(x) = f(ϕ(x)) =
∑

α∈G f̂(α)χα(ϕ(x)). Assume it has a τ -heavy

coefficients; for contradiction we suppose ϕ(x) 6= ax+ b for any a, b. For every β ∈ G we

have

f̂ϕ(β) =
1

|G|
∑
x∈G

fϕ(x)χβ(x) =
1

|G|
∑
x∈G

f(ϕ(x))χβ(x) =

1

|G|
∑
x∈G

∑
α∈G

f̂(α)χα(ϕ(x))χβ(x) =
1

|G|
∑
α∈G

f̂(α)
∑
x∈G

χα(ϕ(x))χβ(x) =

1

|G|
∑
α∈G

f̂(α)
∑
x∈G

χ1(αϕ(x)− βx) =
1

|G|
∑
α∈G

f̂(α)
∑
x∈G

χ1(ψβα(x)) ,

where we denote ψβα(x) = αϕ(x) − βx. Since f̂(0) = 0 we can ignore the case α = 0

and by our supposition that ϕ 6= ax + b we know that there are no α, β such that ψβα is

constant. Hence, the last sum is a character sum satisfying the conditions of Lemma 3.24.

Furthermore, ψβα = (αg(x)− βxh(x))/h(x) and so the value u in Lemma 3.24 is bounded

by max
{

deg(g), deg(h)
}
≤ d. Applying Lemma 3.24, we get that for every α 6= 0 and

every β it holds that |
∑

x∈G\Zh χ(ψβα(x))| ≤ C where C = 2d
√
p.

Now note that

f̂ϕ(β) =
1

|G|
∑
α∈G

f̂(α)
∑
x∈Zh

χ1(ψβα(x))

+
1

|G|
∑
α∈Γ

f̂(α)
∑

x∈G\Zh

χ1(ψβα(x)) +
1

|G|
∑
α/∈Γ

f̂(α)
∑

x∈G\Zh

χ1(ψβα(x)) .

For the first term we note that |
∑

x∈Zh χ1(ψβα(x))| ≤ |Zh| ≤ d and that ‖f‖2 = 1 implies

38

∑
α∈G |f̂(α)| ≤

√
|G| = √p and |f̂(α)| ≤ 1 for all α. Therefore

∣∣∣f̂ϕ(β)
∣∣∣ ≤ d
√
p

+

∣∣∣∣∣∣ 1

|G|
∑
α∈Γ

f̂(α)
∑

x∈G\Zh

χ(ψβα(x))

∣∣∣∣∣∣+

∣∣∣∣∣∣ 1

|G|
∑
α/∈Γ

f̂(α)
∑

x∈G\Zh

χ(ψβα(x))

∣∣∣∣∣∣ .
We apply the triangle inequality on the first sum and the Cauchy–Schwarz inequality

on the second. Let k = |Γ| and write Γ = {α1, . . . , αk}. Then using Lemma 3.24 we get∣∣∣∣∣∣ 1

|G|
∑
α∈Γ

f̂(α)
∑

x∈G\Zh

χ(ψβα(x))

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1

|G|

k∑
j=1

f̂(αj)
∑

x∈G\Zh

χ(ψβαj(x))

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣1p

k∑
j=1

f̂(αj) · C

∣∣∣∣∣∣
≤ 1

p

k∑
j=1

∣∣∣f̂(αj)
∣∣∣C =

2kd
√
p
.

Since k = |Γ| = poly(log(p)) we have that this bound (and similarly for the earlier bound

d/
√
p) is negligible, so we have for example

d
√
p

+
2kd
√
p
< 2d

√
ε .

From Parseval’s identity
∑

α/∈Γ

∣∣∣f̂(α)
∣∣∣2 = ‖f − f |Γ‖2

2 ≤ ε. Therefore, by the Cauchy–

Schwarz inequality we have

∣∣∣∣∣∣ 1

|G|
∑
α/∈Γ

f̂(α)
∑

x∈G\Zh

χ(ψβα(x))

∣∣∣∣∣∣ ≤ 1

|G|

∑
α/∈Γ

∣∣∣f̂(α)
∣∣∣2
 1

2

∑
α/∈Γ

∣∣∣∣∣∣
∑

x∈G\Zh

χ(ψβα(x))

∣∣∣∣∣∣
2

1
2

≤ 1

|G|
√
ε

∑
α/∈Γ

C2

 1
2

.

Then ∣∣∣∣∣∣ 1

|G|
∑
α/∈Γ

f̂(α)
∑

x∈G\Zh

χ(ψβα(x))

∣∣∣∣∣∣ ≤
√
ε
√
p− k2d

√
p

p
≤ 2d

√
ε .

Finally, combining the bounds we get

∣∣∣f̂ϕ(β)
∣∣∣2 ≤ (d

√
p

+
2kd
√
p

+ 2d
√
ε

)2

<
(
4d
√
ε
)2

=

(
4d

√
τ

4d
√

2

)2

=
τ

2
.

Therefore, for every β the coefficient f̂ϕ(β) is not τ -heavy for any noticeable τ . This gives

39

the required contradiction and so we conclude that ϕ is affine.

ε-concentrated Functions Proposition 3.25 shows that if f is concentrated (and far

from constant) and f ◦ ϕ has significant coefficients, then ϕ is affine. It is natural to

wonder whether the condition that f is concentrated is necessary. In fact, the result

cannot be weakened in general: if ϕ(x) = g(x)/h(x) is non-affine and invertible almost

everywhere (such as a Möbius function ϕ(x) = (ax + b)/(cx + d) where ad − bc = 1)

then f(x) = χα(x) + χβ(ϕ−1(x)) is such that f(x) has a significant coefficient at α and

f ◦ ϕ has a significant coefficient at β. However, a version of Proposition 3.25 is true for

some ε-concentrated functions of interest. Specifically, one can show that the result in

Proposition 3.25 also holds for ‘noisy characters’; see [33, Section 6.1]

40

Chapter 4

Bit Security

In the center of this study stands the following question: what can be learnt about X

given partial information about X? The aim of this chapter is to cast shape to this

amorphous question. We present the contexts and cases of interest in which we study

this problem and the terminology that is used in the following chapters.

4.1 Motivation

A one-way function is a function that is easy to compute and hard to invert. In other

words, given an input x to a one-way function f , computing f(x) is easy; however given

f and f(x), computing x is hard. Specifically, a polynomial-time algorithm that takes

f, f(x) and outputs x does not exist. But what about algorithms that output partial

information about x? Do algorithms that determine if x is prime or not, or predict the

parity of x with success better than 50%, exist?

The notion of hardcore functions formalises these questions. Let f be a function, a

function b is computationally hardcore for f if given f(x) it is hard to compute b(x).

Note that we do not require f to be one way, though this notion is of interest if inverting

f is “hard enough”. Moreover, the cases of interest are when given x, computing f(x),

and especially b(x), is easy. One can define hardcore functions by infeasibility to distin-

guish b(x) from random. We do not use this notion, and therefore use “hardcore” for

“computationally hardcore”.

We can already present first examples, for the discrete logarithm problem. Expo-

nentiation in Z∗p is easy, but taking logarithms is not at all. For a prime p > 2 such

that 2n < p < 2n+1 for some integer n and an element g ∈ Z∗p define expg,p(x) :

Z → Z∗p by expg,p(x) := gx (mod p). Hence, given the value gx (mod p), the ques-

tion is what can be learnt about x. We now show that the most significant bit function

MSB : Zp → {0, 1}, given by MSB(x) = 0 if and only if 0 ≤ x < 2n, is hardcore

41

for expg,p. Write x =
∑n

i=0 xi2
i in its binary representation. Notice that MSB(x)

outputs the coefficient of 2n. Suppose that an algorithm A takes gx ∈ Zp and out-

puts MSB(x). First, obtain A(x) = xn; given xn, . . . , xn−j+1, let z =
∑n−j

i=0 xi2
i+j and

compute
(
gxexpg,p(−(xn2n + · · ·+ xn−j+12n−j+1))

)2j
= (gxg−(xn2n+···+xn−j+12n−j+1))2j =

g2j(xn−j2n−j+...+x0) = gz. Invoking A on gz gives xn−j. This shows that given A we can

recursively learn all bits of x, thus computing MSB will able us to invert expg,p.

The fact that a function is hard to invert does not mean that nothing can be learnt

about its inverse image, as the following ultimate example shows. Consider again the

function expg,p where now g ∈ Z∗p is a primitive element. Given the value gx (mod p)

we show how its Legendre symbol allows us to determine the value LSB(x), for the

function LSB : Zp → {0, 1} which gives the parity of its integer input. The order of Z∗p is

p−1 = 2q, and so gp−1 = 1 (mod p), while gq = −1 (mod p). Write x = 2n+x0 for x0 ∈
{0, 1} (0 ≤ n < q). Then (gx)q = g(2n+x0)(p−1)/2 = gn(p−1)+x0(p−1)/2 = (g(p−1))n(gq)x0 ≡
(−1)x0 (mod p). Therefore, if (gx)q ≡ 1 (mod p) then x is even; if (gx)q ≡ −1 (mod p)

then x is odd. Notice that this is a group-theoretic result, and therefore holds for the

exponentiation function, with a primitive element, in any (finite) group of even order. It

can also be generalised if the order of the group is divisible by greater powers of 2.

The general context of one-way functions goes hand in hand with binary representation

of integers. Therefore the greatest interest is to study hardcore bits, as the examples

reflect. Moreover, bits can be thought of as atoms in the representation of integers, and

therefore arise great interest. If a function is one way then clearly not all bits of the

inverse image can be computed. We like to know how many bits cannot be computed,

or whether there are fixed bits, independent of the input, that are always hardcore. The

research field that studies question of this sort is called bit security.

To underline the source of the presumed hardness of f it is common to say that a

function b is hardcore for some well-known problem; in the examples above, instead of

talking about exponentiation, we say “hardcore for DLP”. Another function of interest

is RSAN,e : ZN → ZN , given by RSAN,e(x) := xe (mod N) where N is a product of

two large primes (for description of the RSA cryptosystem, as for other basic notions

presented here, see the book by Galbraith [31] or Stinson [88]). Hardcore bits for RSA

and DLP are well studied. Every single bit is hardcore for RSA. Furthermore, in groups

of prime order for which discrete logarithm is presumed to be hard, every single bit

is hardcore for DLP. These results are explained later. Many examples, exercises and

further discussions can be found at [31, Chapter 21]. The survey [39] covers many results

on hardcore functions which we do not present here; it also covers the basic notions we

present in this Chapter.

42

4.2 Framework

Let us delve in the previous examples as they illustrate the study of hardcore functions.

The second example demonstrates how to show that a function b is not hardcore for

f ; given f(x) simply show how to compute b(x). On the other hand, the first example

already gives a taste of how to show that b is hardcore for f ; present a process that inverts

f if computing b(x) is feasible. The mathematical method is proof by contradiction: given

f(x) and an algorithm that computes b(x), show how to compute x; if f is one way, then

this is a contradiction, thus no such algorithm exists, hence b is hardcore. The key point

is to give a reduction from computing x to computing b(x). Since the question about

the existence of one-way functions is unanswered, in practice we consider candidates for

one-way functions. Accordingly, a proper interpretation of this kind of reductions is to

say that computing b is not easier than inverting f . Since the converse of this statement

clearly holds, we say that computing b is as hard as inverting f .

Oracles To place the focus on the reduction, it is common to consider an oracle that

provides the partial information about x, namely b(x). The benefit of this further ab-

straction (of the algorithm that computes b(x)) is that it unifies different scenarios in

which such reductions are of interest. Besides of the theoretical side of this research, it

can also be applied to side-channel attacks. There, one is assumed to possess some partial

information related to x, with the aim of combining it to compute x. A byproduct of

every bit security result is that the reduction it gives can be used for practical purposes.

We briefly discuss some of this later. In general, we use oracles to simulate different cases

where partial information is obtained, without specifying a specific one.

Interaction We go back to the question in the beginning of this chapter. Clearly, the

(given) partial information b(x) can be learnt. This of course is not sufficient in general

to learn x itself as normally there are many other values that possess the same partial

information. For example, knowing that x is odd, while reduces the possibilities by half,

still leaves us with a very long list of potential values for x. Thus, some kind of interaction

with the oracle is needed. Furthermore, these interactions have to follow some algebraic

relation, as having b(y) for some random y, cannot be used to learn anything about x.

The algebraic relations that underlies these interactions are of great value, and will be in

focus in subsequent chapters.

Success Probability It is not assumed that the algorithm always succeeds to com-

pute b(x). More generally, it is not assumed that the oracle always provides the correct

value for b(x). An oracle that always gives the correct value is called perfect ; an oracle

43

that sometimes fails in providing the correct value (or any value) is called imperfect or

unreliable. When the function b is a few single bits then the strategy of guessing b(x) has

good success probability. This of course is not a useful method to recover x. Advantage

is the success probability in computing b(x) with respect to the guessing strategy. The

oracle’s advantage is of great interest, as it reflects how strong the oracle is assumed to

be. From the bit security perspective, a reduction that handles oracles with lower success

probability is considered a stronger result. The results presented in this thesis are of two

extremes: either the oracles are perfect, or they only have non-negligible advantage over

the guessing strategy.

4.3 Diffie–Hellman & the Hidden Number Problem

Earlier in this section we discussed the notion of bit security with examples from RSA and

DLP, and mentioned that it is natural to associate hardcore functions to well-studied hard

problems. Thus, it is also natural to extend our definition and consider the bit security

of secret keys that arising from primitives that are based on such problems. The road to

consider hardcore functions for CDH and the bit security of Diffie–Hellman keys is now

paved.

We formalise this idea. Consider a group G and an element g ∈ G, recall that given

ga, gb the Diffie–Hellman key is gab. The oracle, simulating an algorithm that computes

f(gab) for some (partial information) function f , should take the public parameters and

output f(gab). Formally, we define the oracle Og,G,f such that Og,G,f (ga, gb) = f(gab).

When g,G and f (or some of them) are clear, we omit them and let O = Og,G,f . Notice

that a choice on the oracle’s type has been made here. One can also consider the stronger

oracle OG,f that takes as input the point g, as well as ga, gb. We demonstrate the strength

of this oracle later. For the majority of results, the weaker oracle is sufficient.

As mentioned, it is crucial to be able to interact with the oracle in a manner that

provides some algebraic relation to the Diffie–Hellman key gab. The key observation is

that the pair ga+r, gb gives rise to the Diffie–Hellman key g(a+r)b = gabgbr. Therefore for

any integer r, Og,G,f (ga+r, gb) = f(gabt) where t = gbr. One can restrict to r ∈ [1,|G|],
and so ga+r = gagr and the multiplier t = (gb)r are efficiently computable. We remark

that one can interact with the oracle in other ways; for example, a similar exponent

approach involves gar, gb. These ideas were presented in the seminal work of Boneh and

Venkatesan [17].

We now combine these ideas and define the hidden number problem (Diffie–Hellman).

HNP(DH): Fix a group (G, ·) and elements g ∈ G, h ∈ 〈g〉. Let f be a function

defined over G and let s ∈ G be unknown. Recover s given oracle access to

44

the function fs(x) := f(s · hx).

This problem is an abstraction to the previous discussion, where s = gab and h = gb (in

the exponent version, one would receive f(sx)). Unlike the DLP case where the “hidden”

exponent is an integer for any group,1 Diffie–Hellman keys are group elements and so a

solution to HNP(DH) in one group does not necessarily imply a solution in a different

group. HNP(DH) is a special case of the general hidden number problem.

HNP: Let (G, ·) be a group, let f be a function defined overG, let t1, . . . , td ∈ G
and let s ∈ G be unknown. Recover s given the d pairs (ti, f(s · ti)).

Thanks to its very general language, the hidden number problem is a tremendous

source for applications. We name a few. First and foremost, it applies not only to the

study of bit security of CDH, but also of RSA and DLP as we sketch below. It has

been extensively used in the study of partial leakage of nonces in DSA and ECDSA

signatures [45, 68, 69] (this is discussed in [70, Section 4.4]) and side-channel attacks in

the context of signatures [27, 4]. The latter work also gives results on decomposition

techniques in elliptic curves. The numerous variants and applications of the hidden

number problem are presented in the comprehensive survey [82]. This problem is studied

today in its own right and is of great theoretical interest.

We remark that besides of its theoretical interest the study of HNP(DH) has another

motivation. At the end of the Diffie–Hellman key exchange protocol, both parties share

the key gab of a certain bit length. In practice, this bit length is (at least twice) larger

than the security level the parties seek, and so some key derivation function is applied

on their shared key. A natural and efficient candidate for such function is to simply take

some block of bits of gab with the required bit length. It is therefore desirable to have a

rigorous proof that computing such block of bits is not much easier than computing the

entire key.

Self-randomisation HNP can be self-randomised in the following way. Given u ∈ G
we define a new unknown s′ = s · u, and t′ = t · u−1, then from any pair (t, f(s · t)) we

produce the pair (t′, f(s′ · t′)) where f(s′ · t′) = f(s · t). Further randomisation can be

done in HNP(DH) in a similar manner to our discussion that led to the problem. See [17,

Section 4.1] for exact details. This randomisation implies that we can assume without

loss of generality that h generates 〈g〉.

1In the context of traces, as arises in LUC and XTR, the discrete logarithm of Tr(gx) is not well
defined. The work [59] has found a way to get around it and showed that all bits are hardcore for DLP
in the context of LUC (the group Gq,2; it seems to hold for perfect oracles), but the question of XTR
(the group Gq,6) is still open.

45

RSA and DLP The bit security of RSA and DLP is well-studied and well-understood;

it is not the main topic of our research. For completeness, we show how it relates to

the hidden number problem. Recall that RSAN,e(x) := xe (mod N), and suppose an

oracle takes xe and outputs f(x). Then, invoke the oracle on (xt)e ≡ xete (mod N) to

receive f(xt). Similarly, recall expg,p(x) := gx (mod p), and suppose an oracle takes gx

and outputs f(x). Then, on gxt = (gx)t the oracle replies with f(xt). Notice that these

problems reduce to a very relaxed variant of HNP, were one can choose the multipliers.

The rest of this thesis is dedicated to the study of variants of HNP(DH), where our

primary motivation is to obtain bit security results for CDH. In most cases we give a

solution to the more general HNP in the same group. An exception is the elliptic curve

variant of HNP(DH), where access to the oracle is essential; it is the first solution to

HNP(DH) that uses the (somewhat weak) control over the multipliers. We consider

different groups such as multiplicative groups of finite fields, points on elliptic curves and

algebraic tori (with the partial group law) and different functions; most of the functions

are different blocks of most significant bits, but for the results for LUC and XTR the

most significant bits function is composed with the trace function. An exception is the

isogeny case, as supersingular isogeny Diffie–Hellman is not based on DLP; we define an

equivalent problem.

4.4 Types of Partial Information

The partial information we consider is restricted to “bits”. However, in the context of

most significant bits some alternative definitions to the classical definition, which arguably

better suit modular residues, are often given in the literature. This section introduces

the different models of bits that will be used throughout the following sections.

4.4.1 Most Significant Bits

Among all sorts of partial information about Diffie–Hellman keys, the most significant

bits have been studied the most. Three types of most significant bits are used in the

literature.

Classical Bits. The binary representation is the most natural and desirable definition

to consider. Let an integer x ∈ [0, p− 1] and denote n := blog(p)c, so x is an (n+ 1)-bit

number. Write x =
∑n

i=0 εi2
i where εi ∈ {0, 1} for every i. Then the k most significant

classical bits of x, denoted by MSBk(x) is the sequence (εn, . . . , εn−k+1). It is sometimes

46

convenient to represent this information as an element of Zp. Notice that given MSBk(x)

one can compute the value
∑n

i=n−k+1 εi2
i + 2n−k which differs from x by at most 2n−k.

This definition gives rise to the following issue. When p = 2n + r for “small” r the

most significant bit gives almost no information, as we expect to have MSB1(x) = 0 for

random choice of x with very high probability.

Modular Bits. This alternative definition gives an equal likelihood for each value to

appear. We divide the interval [0, p − 1] ⊂ R into 2k subintervals, and associate the

k most significant modular bits to the subinterval x belongs to. More precisely, define

MSMBk(x) as the unique integer in {0, . . . , 2k − 1} such that

MSMBk(x)
p

2k
≤ x < (MSMBk(x) + 1)

p

2k
.

Notice that by computing bMSMBk(x) p
2k

+ p
2k+1 e we get a value which differs from x by

at most p/2k+1.

Approximation. A looser definition is to give an indeterministic approximation of x.

We define the k-bit approximation of x, denoted APPRk(x), as any integer u such that

|x−u| ≤ p
2k+1 . As opposed to the deterministic representation given by the modular bits,

the approximation can be thought of as an indeterministic one. For its greater generality,

this definition is frequently being used in the literature.

We remark that in the last two definitions k does not have to be an integer, which

gives the notion of “fractions” of bits. Both of these definitions are known to differ from

classical bits by at most one bit, as already implied above. Therefore, when working

with large k, a difference of one bit is insignificant as it does not play a role in our

understanding of the actual hardness. In the following, for large k, we pay very little

attention to these distinctions. On the other hand, the difference should not be ignored

in cases of very small k; see Chapter 9 for a few examples that illustrate the differences.

4.4.2 Other Consecutive Bits

The definition for classical bits extends naturally for any sequence of bits. For x =∑n
i=0 εi2

i we define Bitsi,i+j(x) as the sequence (εi+j, . . . , εi) where 0 ≤ i ≤ i + j ≤ n.

Specifically, for a single bit 0 ≤ i ≤ n we define Biti(x) = εi. To represent these values

as elements of Zp one can compute a =
∑j

l=0 εi+l2
i+l and consider 2ia. It holds that

x = 2i+jb + 2ia + c, for some unknowns 0 ≤ b ≤ p
2i+j

and 0 ≤ c ≤ 2j. Specifically, we

let LSBk(x) := x (mod 2k). We would also like to consider x (mod l) where l is not

47

necessarily a power of 2. Similar to the generalisations above, we allow k to take any

(positive) real value, and so in this case we define LSBk by LSBk(x) := x (mod d2ke). In

other words, LSBk(x) gives x mod l for 2 ≤ l = d2ke ≤ p.

Unlike the case of most significant bit, for any form of p and any bit i < n there is

no one value that almost always occurs. That is, while the portion of values with εi = 0

may not be equal to the portion of values with εi = 1, the proportion of the two is always

polynomial. Specifically, for the extreme case of p = 2n + 2n−1 + 1, there are 2n − 1

elements x ∈ Z∗p with Bitn−1 = 0, while only 2n−1 + 1 with Bitn−1(x) = 1. Going down

to i = 0 this proportion completely balances with (p − 1)/2 elements x ∈ Z∗p for which

Bit0(x) = 0 and (p− 1)/2 elements for which Bit0(x) = 1.

48

Chapter 5

Hidden Number Problem in Finite

Fields

This chapter surveys results on the hidden number problem in finite fields, and their

applications for bit security of several variants of Diffie–Hellman key exchange.

Let us first present this specialisation of the hidden number problem.

Fq-HNP(DH): Fix a prime p, a positive integer m, an element g ∈ F∗q = F∗pm
and h ∈ 〈g〉. Let f be a function over Fq, let s ∈ F∗q be unknown and let Os,h
be an oracle that on input x computes f on the product shx in F∗q. That is,

Os,h(x) = f(shx). Recover s given query access to the oracle Os,h.

For m = 1 there is only one representation to Fp. For m > 1, the representation of Fq
may affect the ability to have or have not a solution to the problem. The following gives

a representation-free approach.

Let {b1, . . . , bm} be a basis of Fpm , and let {θ1, . . . , θm} be its dual basis. For the secret

s ∈ Fpm in the hidden number problem write s =
∑m

i=1 sibi, and write t = hx. Notice that

each component of st can be represented as a linear combination of the si’s. Indeed, since

st =
∑m

i=1 Tr(stθi)bi one gets (st)j = Tr(stθj) =
∑m

i=1 si Tr(tθjbi) =
∑m

i=1 sit̃
j
i , where we

let t̃ji = Tr(tθjbi).

The most interesting solution to Fq-HNP is for the function f := APPRk applied on

one coefficient of st =
(
(st)1, . . . , (st)m

)
=
(∑m

i=1 sit̃
1
i , . . . ,

∑m
i=1 sit̃

m
i

)
. Solutions for other

functions reduce to this problem.

The trace function allows us to convert Fq-HNP to a linear problem modulo p. This

motivates us to define the following more abstract problem, called the multivariate hidden

number problem.

49

Fp-MVHNP: Fix a prime p and a positive integer m. Let f be a function over

Fp, let t1, . . . , td ∈ Zmp , let s = (s1, . . . , sm) ∈ Zmp \ {(0, . . . , 0)} be unknown

and denote s · x = s1x1 + · · · + smxm mod p. Recover s given the d pairs

(ti, f(s · ti)).

When m = 1 this is a univariate problem, known as Fp-HNP. This is a very important

problem and it deserves being addressed separately. However, in order to keep this section

relatively short, we treat Fp-HNP and Fp-MVHNP as one. The solutions we present to

different variants of the latter are either trivial or hold as is when setting m = 1.

5.1 Solutions

This section summarises the known solutions to several instances of Fp-MVHNP. The

most enlightening solution is where one sets f := APPRk for k ≥
√

log(p) + log log(p).

We explain how to reduce Fp-MVHNP with f := LSBk, as well as in the case that f

provides some inner bits, to Fp-MVHNP with f := APPRk. The special case k = log(p)

has a simpler solution.

We start by considering Fp-MVHNP with f := APPRk. Given d samples of the form

(ti, hi), we can express hi = s1t
i
1 + · · · + smt

i
m − ei − rip, where ei are some bounded

unknowns and ri are unknown integers that reduce the value to [0, p− 1]. The Fp-linear

operation in Fp-MVHNP motivates the use of the linear structure of lattices. Let us

describe how to construct a lattice from the multipliers, and reduce Fp-MVHNP to the

problem of finding a close lattice vector.

Define vs := (s ·t1−r1p, . . . , s ·td−rdp, s1/p, . . . , sm/p) and u := (h1, . . . , hd, 0, . . . , 0).

Consider the (d+m)-dimensional lattice spanned by the rows of the matrix

L =

p 0 0 0 0 0 0 0 0

0 p 0 0 0 0 0 0 0
... 0

. . .
...

...
...

...
...

...
...

...
...

. . . 0
...

...
...

...

0 0 0 0 p 0
...

...
...

t11 t21 td1 1/p
...

... 0

t12 t22 td2 0 1/p
... 0

...
...

...
...

...
. . .

...

t1m t2m tdm 0 1/p

.

Notice that (−r1, . . . ,−rd, s1, . . . , sm)L = vs is a lattice vector close to u. More

50

precisely, as |hi − s · ti + rip| = |ei| ≤ p/2k+1, the Euclidean distance of each of the

first d coordinates of vs and u is at most p/2k+1. The distance of each of the other

m coordinates is at most 1/2. Therefore, the distance between vs and u is at most(
d(p/2k+1)2 +m/4

)1/2 ≤
√
d+mp/2k+1.

The second step of the solution is to recover a close lattice point to the vector u.

Using the result of Babai on CVP (Lemma 2.1) one can find a lattice point within

distance
√
d+mp/2k+1 from u, if k ≥

√
log p+ log log p.

The final step is to show that for sufficiently large d, any lattice point w within this

distance from u is of the special form w = vα for α ≡ s (mod p). In particular, the

number of samples should satisfy d ≥ 2
√
m log(p). This is known as the Uniqueness

Theorem [17, Theorem 5] (see [59, Lemma 8] or [80, Lemma 6] for the multivariate case).

Proving this claim can by obtained by a simple counting argument over solutions to

equations of the form

a1w1 + · · ·+ amwm ≡ c (mod p) .

In particular, let w be a vector within distance
√
d+mp/2k+1 from u. Using the triangle

inequality, for any 1 ≤ j ≤ d∣∣∣∣ m∑
i=1

(wi − si)tji (mod p)

∣∣∣∣ ≤ p/2k . (5.1)

If w ≡ s (mod p) this inequality holds. Otherwise, assuming for now that for every j the

coefficients tji distribute independently and uniformly at random in Zp, it is straightfor-

ward to show that the left hand side of (5.1) distributes independently and uniformly at

random in Zp, and so this inequality is unlikely to hold for sufficiently large d.

This completes the solution to Fp-MVHNP with f = APPRk, for k ≥
√

log p+log log p

and d ≥ 2
√
m log(p): recover a close lattice point w to the vector u, and construct

s = (s1, . . . , sm) from the last m coordinates of w.

Restricting the Set of Multipliers

The solution, as presented above, assumes that the multipliers can take any value in

the group. This assumption is used in order to show that the left-hand side of (5.1)

can take any value in Zp, which in its turn gives a non-trivial bound on the probability

that (5.1) holds. Intuitively, a similar result should hold even if the multipliers have not

necessarily perfectly uniform distribution, and as long as the left hand side of (5.1) has

similar probability to lie in different equal-sized intervals of Zp.
This intuition can be made formal using the notions of discrepancy and homogeneous

distribution which we do not formally define here. Roughly speaking, discrepancy of a

51

sequence of points measures how close the sequence is to be equidistributed; homogeneous

distribution of a sequence of points is a stronger notion that simultaneously measures the

discrepancy of all sequences formed by multiplying the original sequence by a scalar. The

latter important notion is what allows us to achieve the result above.

The theory of exponential sums has been extensively applied to achieve, and improve,

results as above when the multipliers are taken from proper subgroups of the original

group in Fp-MVHNP. This covers all (size-wise) cryptographically interesting subgroups.

Moreover, based on the work of Bourgain and Konyagin [19], in some cases the subgroup’s

order can be as small as pε for fixed ε and sufficiently large p.

This extended solution to Fp-MVHNP gives a solution to Fq-HNP with f = MSBk,

for k ≥
√

log p+ log log p, where the element h may lie in proper subgroup of F∗q.

Literature Review The results presented above are the outcome of numerous works.

The description of the algorithm, along with a proof for the case of uniformly distributed

multipliers, was given in the seminal work of Boneh and Venkatesan [17] for Fp-HNP,

i.e. the univariate case. The use of results from exponential sums to apply the solution

to subgroups was first considered by González Vasco and Shparlinski [41], which was

further extended in [68, 40, 83]. Explicit constructions for multivariate cases were first

given by Shparlinski in [80, 79] for the polynomial hidden number problem (poly-HNP)

and the trace hidden number problem (trace-HNP) respectively. The latter was improved

in [59] to consider small subgroups. Finally, Verheul [91] suggested representing a single

coefficient of a finite field element by the (linear) trace function. His theory is broader

and applies to summing functions.

5.1.1 Other Partial Knowledge

Let x ∈ Zp (as usual, represented in [0, p − 1]), and suppose some lower bits of x are

known. That is, the value h ≡ x (mod l) is known. Write this as h = x − el for some

unknown − p
2l
< e ≤ p

2l
. Let α be the multiplicative inverse of l as an element of Zp, that

is α := l−1 mod p. Multiplying h by α and reducing mod p one gets

αh ≡ αx− e(lα) ≡ αx− e (mod p) .

Recall that |e| ≤ p
2l

, and so αh mod p gives some most significant bits of αx. Writing

l = d2ke, we get |e| < p
2l
≤ p

2k+1 .

Thus, given k least significant bits of x, we can obtain the k-bit approximation of αx.

This gives a reduction from Fp-MVHNP with f = LSBk to Fp-MVHNP with f = APPRk.

52

The solution to the latter gives a solution to the former for k ≥
√

log(p) + log log(p). We

get a similar result for Fq-HNP.

This nice trick can be generalised for other bits of x, as shown in [68, Section 5.1].

Suppose we know l consecutive inner bits of x starting at position j. Writing x =

2l+jb + 2ja + c, we know a while 0 ≤ b ≤ p
2l+j

and 0 ≤ c ≤ 2j are unknown. Let

h := 2ja = x− 2l+jb− c.
By a result of Vinogradov [92, Lemma 1], for an integer w coprime to p and any

positive integer λ there exist relatively prime integers α, β such that βw ≡ α (mod p)

with 0 < β ≤ λ and 0 < |α| < p/λ. The values α, β can be computed efficiently using

convergents from the continued fraction expansion of w/p (see [68, Lemma 16] for exact

details).

Applying this result with w =
(
(2l+j)−1 mod p

)
, λ = 2j+

l
2 we have α2l+j ≡ β ≤ λ =

2j+
l
2 and |α| < p

2j+
l
2

. Notice that 0 ≤ |α|c < 2j p

2j+
l
2

= p

2
l
2

and that

∣∣∣βb− p

2
l
2

+1

∣∣∣ ≤ ∣∣∣2j+ l
2
p

2l+j
− p

2
l
2

+1

∣∣∣ =
p

2
l
2

− p

2
l
2

+1
=

p

2
l
2

+1
.

Then, hα + p/2
l
2

+1 ≡ xα − α2l+jb − αc + p/2
l
2

+1 ≡ xα −
(
βb + αc − p/2 l

2
+1
)

(mod p),

and |βb+ αc− p/2 l
2

+1| ≤ |βb− p/2 l
2

+1|+ |α|c < p

2
l
2+1

+ p

2
l
2

= p

2
l
2+log(23)

.

Thus, rounding the left hand side if needed, given l consecutive inner bits of x, we

can obtain roughly l
2

most significant bits of αx. This gives a reduction from Fp-MVHNP

with 2(k + 1) consecutive inner bits to Fp-MVHNP with f = APPRk. The solution to

the latter gives a solution to the former for k ≥
√

log(p) + log log(p). We get a similar

result for Fq-HNP.

Knowledge of a Complete Component Consider the case where the oracle in Fq-
HNP provides a complete component (st)j of the product st. This is equivalent to getting

the entire value h =
∑m

i=1 siti in Fp-MVHNP. Given m linearly independent equations

of this form, the solution is trivial. Standard arguments show that one is expected to

obtain the required linear independence.

Unreliable Oracles

The solutions above assume the oracle always responds with the correct answer, equiv-

alently the samples in Fp-MVHNP are not erroneous. Getting a similar result with an

unreliable oracle seems much harder, as either in the linear algebra solution or in the lat-

tice approach having a wrong sample completely changes the space of solutions. Several

works have been trying to deal with the case of unreliable oracles, though none really

gives an enlightening approach, as we now explain. In all of these works, one tries to

53

obtain a set of non-erroneous samples.

First observation is that imperfect oracles with very high success probability are likely

to produce the required non-erroneous samples. Some details are given in [17, Section

4.1] along with the randomisation of samples.

When a complete component is given we solve using linear algebra (in Zp) with m (lin-

early independent) equations. In the case that an explicit set of wrong samples (indexed

by the multipliers) is pre-known, Shparlinski [81] shows how to randomise the queries to

the oracle to obtain equations outside of this set. We remark that the assumption to

know the explicit set in advance is strong. However, there are cases where it is realistic,

as we show in Section 6.2 below (in a different context and a solution that does not use

lattice approach).

Moreover, if we fix the oracle’s success probability ε, then the probability that m

independent equations are error-free is εm. Now, suppose one fixes m, then asymptotically

this probability becomes non-negligible with respect to log(p)−1. More precisely, the

success probability εm is constant. This was already remarked and formalised in the

original work of Verheul [91, Theorem 25]. Subsequent works, as [94, Theorem 4] and

[93], take essentially this exact same method. The latter work combines Shparlinski’s

randomisation approach with the approach taken in [40] (see the following paragraph) to

produce an even better probability (i.e. the constant is smaller). It is not clear that the

approaches in these works have any novelty.

The lattice approach for Fp-HNP (m = 1) was considered in [40] with several error

models. Sufficient randomisation of oracle queries, along with a well-known hybrid ar-

gument that follows from Markov inequality, show how to produce a set of error-free

samples. However, to get a polynomial-time solution there is a tradeoff with the number

of given bits, which can be as low as O(log p/ log log(p)). We remark that in the case

that many bits are known one can implement the ideas of Bleichenbacher [10]: by adding

sufficiently many samples, one can generate new samples that lie in bounded intervals

of Zp. Bleichenbacher proposes an approach to solve Fp-HNP in this case, which applies

even for approximations of 1 bit, or below, and the samples can be erroneous (there is no

need to generate error-free equations). This approach is used indirectly in the following

Chapter (we do not explain this connection; see [33, Section 3.1] for more details).

5.2 Applications

This section lists the known bit security results that follow from the solutions to Fp-
MVHNP and Fq-HNP. We use the fact that obtaining bit security results for the following

variants of Diffie–Hellman key exchange can be reduced to solving variants of the hidden

54

number problem, as explained in the previous chapter.

Diffie–Hellman in Prime Fields Obtaining bit security results for the original Diffie–

Hellman key exchange protocol, i.e. in the multiplicative group of a prime field, was the

motivation of introducing the hidden number problem by Boneh and Venkatesan [17].

They gave the first solution to Fp-HNP with f := MSMBk for k ≥
√

log(p) + log log(p),

which is the only known result to date. As this solution also holds for other bits (see

Section 5.1.1), we get the following bit security result for Diffie–Hellman key exchange:

computing the
√

log(p)+log log(p) most or least significant bits of the Diffie–Hellman key

is as hard as computing the entire key; moreover computing any 2(
√

log(p) + log log(p))

consecutive inner bits of the Diffie–Hellman key is as hard as computing the entire key.

Diffie–Hellman in Non-prime Fields Consider the field Fpm as an m-dimensional

vector space over Fp, and represent elements of Fpm as vectors. The result of Verheul [91]

shows that computing one component of the Diffie–Hellman key is as hard as computing

the entire key. In particular, for p = 2, we get that computing any bit of the Diffie–

Hellman key is as hard as computing the entire key. The solution to Fpm-HNP shows

that computing the
√

log(p) + log log(p) most or least significant bits (or twice as many

inner bits) of any component of the Diffie–Hellman key is as hard as computing the entire

key.

Tripartite Diffie–Hellman This specialisation of the hidden number problem is al-

most equivalent to Fq-HNP(DH): the oracle takes ([a]P, [a]Q), ([b]P, [b]Q) and ([c +

r]P, [c+r]Q), and outputs partial information about e(P,Q)ab(c+r) = e(P,Q)abce(P,Q)abr.

Letting s := e(P,Q)abc and t := e(P,Q)abr we get Fq-HNP. Subsequently, computing the√
log(p) + log log(p) most or least significant bits (or twice as many inner bits) of any

component of the tripartite Diffie–Hellman key is as hard as computing the entire key.

See [32] for complete details.

LUC & XTR Diffie–Hellman The bit security of the Diffie–Hellman variants of

LUC and XTR follows from trace-HNP(DH), where one gets oracle access to f(x) :=

MSBk

(
Tr(gabhx)

)
, or simply receives samples of the form (ti,MSBk

(
Tr(st)

)
, and the

goal is to recover Tr(s) = Tr(gab). Trace-HNP can be thought of as a specialisation of Fp-
MVHNP as we already explained: from the linearity of trace Tr(st) = Tr(

∑m
i=1 sibi · t) =∑m

i=1 si Tr(tbi) =
∑m

i=1 sit̃i.

Recall that in LUC and in XTR the Diffie–Hellman key Tr(gab) is an element of Fp
and Fp2 , respectively. The solution to trace-HNP shows that computing the

√
log(p) +

55

log log(p) most or least significant bits (or twice as many inner bits) of any component

of LUC and XTR Diffie–Hellman key is as hard as computing the entire key. Moreover,

with elementary facts about the trace function one can also consider the trace function

over Fp (for XTR), or the hardness of computing gab given partial information about

Tr(gab). In both cases, the same results hold. See [79, 59] for complete details.

56

Chapter 6

Hidden Number Problem with

Chosen Multipliers

This chapter presents the chosen multiplier variants of HNP with focus on Fp-HNP and

Fp-MVHNP. We present the solutions to the former and give a solution to the latter. The

tools and results presented in Chapter 3 are used to solve these hidden number problems,

and we show that they cannot be used for other classes of hidden number problems,

with non-linear operations. We show how these solutions are used to provide bit security

results in schemes related to Diffie–Hellman key exchange. The solutions and results

presented in this chapter do not apply to the original Diffie–Hellman key exchange or its

elliptic curve counterpart.

6.1 Linear Operations

The chosen-multiplier hidden number problem, as its name suggests, allows one to choose

the multipliers in the hidden number problem.

Fp-HNP(CM): Fix a prime p, let f be a function defined over Fp and let s ∈ F∗p
be unknown. Recover s given oracle access to the function fs(x) := f(sx).

One can think of different models of oracle access: in the adaptive model access to

the oracle is given throughout the entire recovery procedure, so it is possible to adapt the

queries throughout the process; in the non-adaptive model one is allowed to query only

once on a set of chosen points before the recovery process starts. Clearly the latter model

is stricter than the former. This distinction has no applications to bit security result, but

can be used to model side-channel attacks, for example.

This problem has a long history, although the term “hidden number problem” was

coined by Boneh and Venkatesan in a later stage. It was originally studied in the context

57

of bit security of RSA, and with the abstraction of the hidden number problem it was

realised that it also applies to DLP, as to other computational problems.

If the function f in Fp-HNP(CM) is the least significant bit function, then it can be

easily solved by swapping the bits, as shown above. This idea generalises naturally to

all outer log log(p) bits. Therefore, most of the focus was directed to cases of unreliable

oracles; inner bits functions, especially with unreliable oracles, is much more complex.

A result for the least significant bit function for any oracle with non-negligible advan-

tage over a guess was first given by Alexi, Chor, Goldreich and Schnorr [3], based on

the work in [6]. This solution is adaptive and uses a list-decoding approach, which out-

puts the unknown s within a small-sized list (potentially with some other elements). A

complete solution to Fp-HNP(CM) with any single-bit function and for any oracle with

non-negligible advantage over a guess was presented by H̊astad and Näslund [46], based

on the latter’s thesis. This solution is adaptive and also uses a list-decoding approach.

More on the history and development throughout the years can be found in the very nice

survey [39].

Many of these works are very complex, especially for inner bits, and require compli-

cated algebraic manipulations such as tweaking and untweaking bits. A new approach to

Fp-HNP(CM) was suggested by Akavia, Goldwasser and Safra [2]. This approach enjoys

many advantages: first, it is very simple and clear; it enjoys a greater generality and more

of a mathematical appeal than bit manipulations; it applies to a larger class of functions;

the solution is non-adaptive. We rephrase the result from the original work [2, Theorem

2] and sketch its proof.

Theorem 6.1. For any function f (over Fp) with a non-zero τ -heavy Fourier coefficient,

Fp-HNP(CM) has a (non-adaptive) solution in time polynomial in log(p), ‖f‖∞, τ−1.

Proof sketch. Run the (non-adaptive) SFT algorithm from Theorem 3.9 in the additive

group Zp with threshold τ on f and fs to get lists L,Ls of τ -heavy coefficients for

each function, respectively. If τ is not known, one can experiment with the learning

algorithm (in polynomial time) to choose a suitable threshold. By the scaling property

f̂s(α) = f̂(αs−1) for every α ∈ F∗p. Therefore, for every α ∈ Ls (for which f̂s(α) is

τ -heavy) there exists β ∈ L such that β = αs−1. The value αβ−1 is a candidate for s.

Each list is of size at most 2‖f‖2
2/τ , and so the number of candidates for s is at most(

2‖f‖2
2/τ
)2

. One can try all possible candidates in order to match the pairs.

Extending the 1-dimensional Fp-HNP(CM) to higher dimensions, we get the following.

Fp-MVHNP(CM): Fix a prime p and a positive integer m, let f be a function

defined over Fmp and let s ∈ Fmp \ {(0, . . . , 0)} be unknown. Recover s given

oracle access to the function fs(x) := f(s · x) = f(s1x1 + · · ·+ smxm).

58

With the multivariate scaling property (Lemma 3.6) Fp-MVHNP(CM) enjoys a similar

solution to Fp-HNP(CM).

Theorem 6.2. For any function f (over Fp) with a non-zero τ -heavy Fourier coefficient,

Fp-MVHNP(CM) has a (non-adaptive) solution in time polynomial in m, log(p), ‖f‖∞, τ−1.

Proof. The proof follows from Proposition 3.7 and the proof of Theorem 6.1. We repeat

the main arguments. Run the (non-adaptive) SFT algorithm from Theorem 3.9 in the

additive group Zp (resp. Zmp) with threshold τ on f (resp. fs) to get a list L (resp. Ls)

of τ -heavy coefficients.

From Proposition 3.7, (α1, . . . , αm) ∈ Ls if and only if there exists β ∈ L such that

αj = βsj for every 1 ≤ j ≤ m. The value (α1β
−1, . . . , αmβ

−1) is a candidate for s.

Theorem 6.1 and Theorem 6.2 hold for any oracle with non-negligible advantage.

In this case one needs to lower the threshold for the SFT algorithm as in general the

erroneous values make the function less correlated with a small set of characters; see [33,

Section 3.4] for more details. As opposed to the random-multiplier case (presented in

the previous chapter), this solution does not require an explicit set of error-free samples.

The theorems specifically holds for concentrated functions (see Definition 3.5) and since

single-bit functions are concentrated (see Section 3.3.1) and admit ‖f‖∞ = 1, we get the

following (the multivariate case follows also from Corollary 3.8).

Corollary 6.3. There exist (non-adaptive) polynomial-time solutions to Fp-HNP(CM)

and Fp-MVHNP(CM) for any single-bit function and any oracle with non-negligible ad-

vantage over guessing.

Remark 6.4. One can try to solve Fp-MVHNP(CM) using the oracle queries of the

form (0, . . . , 0, xi, 0, . . . , 0) and the solution to Fp-HNP(CM). As mentioned above, the

special interest in these problems is mostly for different cases of unreliable oracles. An

oracle may be inherently wrong on such deterministic queries. The direct solution to

Fp-MVHNP(CM) allows to generate sufficient randomisation to overcome such cases.

6.2 Applications

6.2.1 Bit Security of non-uniform Diffie–Hellman Related Schemes

The fundamental difference between Fp-HNP, Fp-MVHNP and Fp-HNP(CM), Fp-MVHNP(CM)

is what allows us to achieve much stronger results for the latter. In non-uniform models,

along with a problem’s setting, one receives some advice bits that otherwise would be out

of his reach. Using non-uniform models to study problems related to Diffie–Hellman key

59

exchange goes back to the work of Maurer [63]. The idea of using advice to solve different

variants of the hidden number problem was first considered by Boneh and Venkatesan

in their subsequent work [18]. Using advice bits, independent of the secret s, they were

able to solve Fp-HNP with uniform and independent samples for a function that outputs

2 log log p most significant bits. Shparlinski and Winterhof [84] modified this work to

extend the result to certain subgroups of Fp, also under the provided advice.

Recall that our interest in the random-multiplier variants comes from Fq-HNP(DH),

where one has some (very weak) control over the multipliers, namely hx on chosen x.

Achieving a strong control over the multipliers in this case seems hopeless, as this means

one needs to solve the discrete logarithm problem in F∗q – which will make the Diffie–

Hellman problem vacuous.

The advice needed in order to reduce Fq-HNP(DH) to its chosen-multiplier counter-

parts is discrete logarithms to the base h. Recall that h = gb in Diffie–Hellman key

exchange, so obtaining specific discrete logarithm values for h is not helpful to prove bit

security results for Diffie–Hellman key exchange, as the value gb changes in every key

share, unless one considers static Diffie–Hellman. Consequently, Boneh and Venkatesan

consider Diffie–Hellman related schemes where the value gb is fixed. In particular, they

addressed ElGamal’s public key system and Okamoto’s conference key sharing scheme.

See [18, Section 3] for details on these schemes and Theorem 3.2 there for their exact

results.

This approach can be used to obtain stronger results. Based on Corollary 6.3, and

assuming advice bits – discrete logarithms to base gb – that depend only on p and g (and

not on the secret s), one gets the following.

Corollary 6.5. Given advice bits depending only on p and h, there exist (non-adaptive)

polynomial-time solutions to Fq-HNP(DH) with any single-bit function and for any oracle

with non-negligible advantage over a guess.

Akavia [1] used this result for Fp-HNP(DH) to give single-bit results for ElGamal’s

public key system and Okamoto’s conference key sharing scheme taking place in Z∗p.
The equivalence between Fpm-HNP to Fp-MVHNP is explained in Chapter 5, and so one

obtains the same results for ElGamal’s public key system and Okamoto’s conference key

sharing scheme, taking place in F∗pm .

We remark that while the number of discrete logarithms given as advice in the lattice

approach of Boneh and Venkatesan is bounded by 2 log(p) (in fact one can take log(p) +

log log(p) + 4), the number of discrete logarithms given as advice needed for the SFT

algorithm (and subsequently the solution in Corollary 6.5) is larger, but still linear in

log(p). It should also be noted that when g is restricted to a small subgroup, it is not

60

clear that the required chosen multipliers lie in the group generated by g (see [33, Section

6.2] for more details).

6.2.2 Hardness of Computing Bits of Diffie–Hellman Keys in

Different Group Representations Simultaneously

The results for Fq-HNP(DH), presented in the previous chapter, are quite weak compared

to the result presented in this chapter for Fp-HNP(CM). This fact led researchers to

consider a broader study of the bit security of Diffie–Hellman key exchange that exploits

the solution of Fp-HNP(CM). One study of this kind exploits different representations of

the group, as we now explain.

In Chapter 4 we mentioned that instead of the oracle OG,g, for which the point g is

“embedded” to, one can consider a stronger oracle OG, that also takes as input the base

point g, that is OG(g, ga, gb) = f(gab). In this section we present an even stronger oracle

O that also takes as input the group representation Φ(G), that is O(Φ(G), g, ga, gb) =

f
(
Φ(gab)

)
.

Framework

Let Φ be a homomorphism on G. Given g, ga, gb ∈ G one can compute Φ(g), Φ(g)a =

Φ(ga) and Φ(g)b = Φ(gb). The former triple gives rise to the Diffie–Hellman key gab

and the latter triple to Φ(g)ab. Fix some representation for G. Consider an oracle O
that takes as input a Diffie–Hellman triple (g, ga, gb) and also a group isomorphism Φ

and outputs some partial information about the Diffie–Hellman key Φ(g)ab follows from

the triple
(
Φ(g),Φ(g)a,Φ(g)b

)
in the representation induced from Φ. Notice that this is

different from querying the oracle OG for OG
(
Φ(g),Φ(g)a,Φ(g)b

)
, as the latter considers

Φ(g)ab in G, while the oracle O considers Φ(g)ab in a different representation of G, where

a different multiplication table is used.

The trick is to find representations of G where Φ(x) = rx for some r ∈ Z∗p and every

x ∈ G. If a family {Φr}r∈Z∗p of such isomorphisms is at our disposal, we can reduce to

the chosen-multiplier hidden number problem: for any chosen r apply the oracle query

O(Φr, g, ga, gb) = f
(
Φ(gab)

)
= f

(
rgab

)
. To use the single-bit result in Corollary 6.3, it

is left to find group isomorphisms of this form.

Elliptic Curves This framework was developed by Boneh and Shparlinski for elliptic

curves over prime fields Fq where the oracle takes different Weierstrass equations of the

curve [16]. Given an elliptic curve in a short Weierstrass form W : y2 = x3 +Ax+B, the

curve given by Wλ : Y 2 = X3 + Aλ4X + Bλ6 is isomorphic to W by the mapping φλ :

61

W → Wλ that takes P = (x, y) on W to Pλ = (λ2x, λ3y) on Wλ, for any non-zero λ ∈ Fq.
Specifically, the image of the point S = (sx, sy) ∈ W under φλ is φλ(S) = (λ2sx, λ

3sy).

The problem of recovering an unknown s ∈ Fp where on chosen λ one gets bits of λds is

known as Fq-HNP(CM)d (see [16]).

To solve Fq-HNP(CM)2 with secret sx, if t is a quadratic residue in Fp, that is t = λ2

for some λ ∈ Fq, then by applying the isomorphism Φλ2 one can choose the multiplier

t for the unknown sx. This shows how the problem of recovering sx can be reduced to

Fp-HNP(CM) where half of the multipliers can be chosen (assuming the characteristic

of the field is not 2, which is implicit from the Weierstrass equation). For the other

half, i.e. when t is not a quadratic residue in Fq, we guess the value (the specific bit of

sxt). We expect to guess correctly half of the time. These guesses therefore simulates an

unreliable oracle. Since the solution for Fp-HNP(CM) holds for such oracles, i.e. when

some of the values are incorrect, we can use the solution to Fp-HNP(CM) to recover sx.

Similar arguments for the y-coordinate show that we can recover sy in this model given

only one bit.

Having one coordinate of the secret point is sufficient to recover the complete secret

point as there are at most three possibilities for the other coordinate. Furthermore, a

result of Shoup [78, Theorem 7] can be used to determine which of the candidates for the

Diffie–Hellman key is the correct one.

This result was given by Boneh and Shparlinski [16] for the least significant bit function

(using the result for Fp-HNP(CM) in [3]; a different approach is taken in [49]), and was

first noticed by Kiltz [51] to hold for every single bit (using the result for Fp-HNP(CM)

in [46]). The solution to the more general Fp-MVHNP(CM), through an equivalent Fq-
HNP(CM), immediately shows that these results also hold when one sets Fq to be a finite

extension field, that is for elliptic curves over extension fields. The latter case holds in a

greater generality as one can also change the representation of the field, given the results

below (see [34, Section 5.2.2] for details).

The result in this model has the following interpretation: given an instance of Diffie–

Hellman problem (P, [a]P, [b]P) in an elliptic curve over a finite field under some repre-

sentation, simultaneously computing single bits of [ab]P for (a non-negligible fraction of)

short Weierstrass equations of the curve is as hard as computing [ab]P in the original

representation of the curve.

Notice that the context of Diffie–Hellman key exchange almost does not come into

play in this model, the interaction with the oracle – which gives the multipliers – only

uses the different isomorphisms. This method therefore holds in greater generality for

other secret values in the group. This observation was used in [29] to show hardness of

individual bits of elliptic curve and pairing-based functions (for elliptic curves over prime

62

fields).

Extension Fields The same approach can be taken with representations of non-prime

fields Fpm . It is of interest to consider individual bits of the i-th component in Fp for

every 1 ≤ i ≤ m. In this case it is convenient to rephrase the problem as follows. Write

r = (r1, . . . , rm) ∈ Fmp and fix 1 ≤ i ≤ m; we look for isomorphisms Φr : Fpm → Fpm such

that (Φr(x))i =
∑m

j=1 rjxj. That is, the i-th component of the image under Φr is the dot

product of x = (x1, . . . , xm) and r. This will reduce the problem to Fp-MVHNP(CM).

A special case is for r = (0, . . . , 0, ri, 0, . . . , 0), which gives Fp-HNP(CM), and so one is

able to recover si, the i-th component of the secret s. As shown in the previous chapter,

recovering one component in these problems is as hard as recovering the entire secret.

This approach is taken in [30, 94] for polynomial representations of the field. Explicit

isomorphisms are given for every i, except of i = 1 (the case of i = 1 is explicitly treated

for Fp2). We refer to [34, Section 5.2] for more details on these solutions.

We use this approach with general r = (r1, . . . , rm) to extend the results in this model.

We give explicit isomorphisms for any r for normal basis representation of the field, and

as an abstract vector space, for any 1 ≤ i ≤ m. We also show that for polynomial

representations, the property Φr cannot hold for i = 1 with all r. As mentioned above,

these results hold for a larger class of secret values in the field.

The result in this model has the following interpretation: given an instance of the

Diffie–Hellman problem (g, ga, gb) under some representation of a finite extension field

Fpm , simultaneously computing single bits of gab in (a non-negligible fraction of) different

representations (of specific form) of the field is as hard as computing gab in the original

representation of Fpm .

Proposition 6.6. Let s = gab be a Diffie–Hellman key in Fpm. Given g, ga, gb ∈ Fpm,

computing a single bit of s in a vector space or normal bases representation of Fpm, for

representations induced from Φr, is as hard as computing s.

Proof. Write s = (s1, . . . , sm) where si ∈ Fp. Assume one has oracle access to a bit of

component j of Φr(s). Given λ = (λ1, . . . , λm) ∈ Fmp , one needs to construct an isomor-

phism Φλ : Fpm → Fpm between representations of the finite field such that component j

of Φλ(s) is of the form
(
Φλ(s)

)
j

= λ1s1 + · · ·+λmsm. The result then follows from the so-

lution to Fp-MVHNP(CM). We briefly discuss the construction of a suitable isomorphism

in the cases of interest.

63

General Vector Space Fmp Let B1 = {v1, . . . , vm}, B2 = {u1, . . . , um} be two bases of

Fmp . The mapping Φλ of an element s = s1v1 + · · ·+ smvm should satisfy

Φλ(s) = (∗)u1 + · · ·+ (λ1s1 + λ2s2 + · · ·+ λmsm)uj + · · ·+ (?)um .

Consider this linear map as a matrix. One can easily see that the j-th row of this matrix

should be (λ1 , λ2 , . . . , λm). In order for the matrix to be a full rank map – therefore

an isomorphism – it should be nonsingular. One can easily construct such a linear map.

Normal Basis Let B1 = {α, αp, . . . , αpm−1}, B2 = {β, βp, . . . , βpm−1} be two normal

bases of Fpm . The mapping Φλ of an element s = s1α + · · ·+ smα
pm−1

should satisfy

Φλ(s) = (∗)β + · · ·+ (λ1s1 + λ2s2 + · · ·+ λmsm)βp
j−1

+ · · ·+ (?)βp
m−1

. (6.1)

Consider the linear map satisfying Φλ(α) = λjβ + λj−1β
p + · · · + λj+1β

pm−1
(indices for

λk are taken modulo m such that 1 ≤ k ≤ m, i.e., λ0 = λm and λm+1 = λ1). Then

Φλ(s) = Φλ(s1α + · · ·+ smα
pm−1

) = s1Φλ(α) + s2Φλ(α)p + · · ·+ smΦλ(α)p
m−1

= s1(λjβ + λj−1β
p + · · ·+ λj+1β

pm−1

)

+ s2(λjβ + λj−1β
p + · · ·+ λj+1β

pm−1

)p + · · ·

+ sm(λjβ + λj−1β
p + · · ·+ λj+1β

pm−1

)p
m−1

= s1(λjβ + λj−1β
p + · · ·+ λj+1β

pm−1

)

+ s2(λjβ
p + λj−1β

p2 + · · ·+ λj+1β) + · · ·

+ sm(λjβ
pm−1

+ λj−1β + · · ·+ λj+1β
pm−2

) ,

where the last equality follows from βp
m

= β for normal bases. After collecting the terms

for each βp
k

(with 0 ≤ k ≤ m−1) one gets (6.1). In order for Φλ to be an isomorphism, one

needs to check that Φλ(α)p
m

= Φλ(α) and that the set {Φλ(α),Φλ(α)p, . . . ,Φλ(α)p
m−1}

is linearly independent. This can be easily shown: the former property follows from

βp
m

= β, while the latter from the linear independence of the basis B2.

We address the case of polynomial representations and show it is more restrictive.

Polynomial Basis Given a polynomial a = amx
m−1 + · · ·+ a2x+ a1, one looks for an

isomorphism Φλ such that

Φλ(a) = (∗)xm−1 + · · ·+ (λ1a1 + λ2a2 + · · ·+ λmam)xj−1 + · · ·+ (?)x0 .

64

For the constant polynomial 1 = 0·xm−1+· · ·+0·x+1 one gets that the coefficient of xj−1

of the polynomial Φλ(1) is λ1, i.e., Φλ(1) = λ1x
j−1 + Since an isomorphism maps the

identity element to the identity element, it follows that if j 6= 1, then λ1 has to be 0, and if

j = 1, then λ1 has to be 1. Therefore, when using polynomial representations, one cannot

choose multipliers for s1 and therefore cannot recover the secret s1 using the solution to

Fp-MVHNP(CM). One can still try to recover some, or all, of the other coefficients using

the method to solve Fp-MVHNP(CM).

Remark 6.7. An approach of this kind was taken for hyperelliptic curves (where Diffie–

Hellman key exchange takes place in the divisor class group of the curve) in [96], where

one considers different Mumford representations. It is shown that computing a single

bit of any component of the secret key in this model is as hard as computing the entire

component. A complete proof that one can use this to recover the entire key is not given.

This strong model is unsuitable to prove results for Diffie–Hellman key exchange in a

prime field, as it has a unique representation. In Chapter 9 we consider a weaker model

– we assume the decisional Diffie–Hellman assumption holds – that allows to prove the

bit security of individual bits of the Diffie–Hellman key.

6.3 Non-linear Operations

The solutions to the Fp-HNP(CM) and Fp-MVHNP(CM) are based on Fourier analysis in

additive groups and exploit the scaling property of the Fourier transform for the functions

fs(x) := f(sx) and fs(x) := f(s1x1 + . . . + smxm). In other words, these functions are

compositions of f with a linear map.

It is natural to consider whether this approach can be used for other algebraic groups

(such as elliptic curves and algebraic tori). The hidden number problem in these cases

involves operations which are rational, and not linear, over Zp. The natural approach is

to still use Fourier analysis in the additive group (Zp,+) but instead of composing with

a linear map, to compose with a rational function.

If such tools could be developed we might have an approach to the bit security of

Diffie–Hellman key exchange in the group of elliptic curve points in certain models. There

are also other interesting problems that could be approached with Fourier analysis on

general groups. For example, the authors of [15] raise the question whether it is possible

to apply these results to the modular inversion hidden number problem. We present all

of these problems in the following chapter.

Unfortunately, there is a major obstacle to applying the SFT algorithm to these sorts

of problems. Let f : G → C be a function and let fs(x) = f ◦ ϕs(x), where ϕs : G → G

65

is an efficiently computable function (that depends on some value s). To generalise the

proof of Theorem 6.1 one needs the following three conditions:

1. the function f has a (non-zero) τ -heavy coefficient for a non-negligible τ ;

2. the function fs has a (non-zero) τ -heavy coefficient for a non-negligible τ ;

3. there exists a relation between the (τ -heavy) coefficients of f and fs that allows to

determine s (or at least a small set of candidates for s).

Since single-bit functions are concentrated, as shown in Section 3.3.1, under the con-

ditions of Proposition 3.25, the function fs = f ◦ ϕs has no non-negligible τ -heavy co-

efficients. The elliptic curve addition law and the partial group law for the algebraic

tori, as well as the operation in the modular inversion hidden number problem, satisfy

the conditions on ϕ in Proposition 3.25. Therefore, the function fs in the corresponding

hidden number problems has no heavy coefficients, and so the solution involving the SFT

algorithm cannot be used.

66

Chapter 7

The Modular Inversion Hidden

Number Problem

This chapter addresses hidden number problems with non-linear operations. We review

previous work and give applications to the bit security of prime-field elliptic curve Diffie–

Hellman and the torus T2 Diffie–Hellman.

The operation in the hidden number problem is not necessarily linear over the ground

field, as happens for example for elliptic curve addition. A basic building block in address-

ing such problems is the modular inversion hidden number problem (MIHNP), which was

introduced by Boneh, Halevi and Howgrave-Graham [15]. This problem is formulated as

follows.

MIHNP: Fix a prime p and positive numbers k, d. Let s ∈ Zp be unknown and

let t1, . . . , td ∈ Zp \ {−s} be chosen independently and uniformly at random.

Recover s given the d pairs
(
ti,APPRk

(
1

s+ti

))
.

As with the original hidden number problem, also the language of this problem is

broad enough to give a large number of applications, as already appears in the original

paper [15]. It is also closely related to the study of the inversive congruential generator

(see for example [11, 12]; this relation is made explicit in [95]).

For this problem it is not clear how to construct a lattice on which one can use Babai’s

result for a close lattice point, as done for the linear problems, as explained in Chapter 5.

Yet, other lattice algorithms have been proven to be useful in solving the problem. We

present the main basic steps of these solutions.

Recall that h := APPRk

(
1
s+t

)
= 1

s+t
− e mod p where |e| ≤ p

2k+1 . First, as we

want to construct a lattice, a linearization of the problem is needed. The first step is to

67

eliminate the denominator:

(h+ e)(s+ t) ≡ 1 (mod p)

or

es+ hs+ te ≡ 1− ht (mod p) .

This is not satisfactory as the product es of the two unknowns s, e imposes strong diffi-

culties, as on the one hand the size of es is not small enough in general to use algorithms

for short lattice vectors, and on the other hand it prevents us from looking for a lin-

ear combination of the lattice basis with coefficients that only depend on s, as in the

lattice-based approach for Fp-MVHNP.

To overcome this issue, one can isolate s in hd by

s ≡ 1− (hd + ed)td
hd + ed

≡ 1

hd + ed
− td (mod p) ,

and substitute this value into hj for all 1 ≤ j < d. This gives

1 ≡ (hj + ej)(s+ tj) ≡ (hj + ej)

(
1

hd + ed
− td + tj

)
(mod p) .

Multiplying by hd + ed and rearranging gives

(hd + ed)(hj + ej)(td − tj) + ed − ej + hd − hj ≡ 0 (mod p) .

Finally, to get a linear combination of the unknowns we write the latter as

(td−tj)edej+(hj(td−tj)+1)ed+(hd(td−tj)−1)ej+hdhj(td−tj)+hd−hj ≡ 0 (mod p) .

The next step consists of expressing this relation as a polynomial, in order to apply

algorithms for computing small roots of polynomials. That is, the bivariate polynomial

Fj(X,Y) := AjXY +BjX + CjY +Dj (7.1)

= (td − tj)XY + (hj(td − tj) + 1)X + (hd(td − tj)− 1)Y + hdhj(td − tj) + hd − hj

satisfies Fj(e1, ej) ≡ 0 (mod p).

Algorithms for computing small roots of modular polynomials are well known, and

they are based on the ideas of Coppersmith [23]. However, in order to achieve a rigorous

result, a more careful analysis is needed.

We begin with a relatively simple non-rigorous explanation of how to recover small

68

roots of the polynomials. This method is fully described in [15, Section 3.1]. From this

method, one can derive the bounds on the roots’ size.

Let n := d − 1. The solutions to the system of the n polynomials in (7.1) can be

represented by a lattice of dimension 3n + 2, as follows. The lattice is spanned by the

rows of a matrix M of the following structure

M =

(
E R

0 P

)

where E and P are diagonal square matrices of dimensions 2n + 2 and n, respectively,

and R is a (2n + 2) × n matrix. Each of the first 2n + 2 rows of M is associated with

one of the terms in (7.1), and each of the last n columns is associated with one of these

equations. For example, for n = 2 we get the matrix (m is the bit size of p and k the

number of bits we get)

M =

1 0 0 0 0 0 D1 D2

0 2k−m 0 0 0 0 C1 0

0 0 2k−m 0 0 0 0 C2

0 0 0 2k−m 0 0 B1 B2

0 0 0 0 22(k−m) 0 A1 0

0 0 0 0 0 22(k−m) 0 A2

0 0 0 0 0 0 p 0

0 0 0 0 0 0 0 p

.

For ed, ej, the last n columns give us equations over the integers:

Ajedej +Bjed + Cjej +Dj + kjp = 0 .

For the corresponding solution vector

v := 〈1, e1, . . . , ed−1, ed, ede1, . . . , eded−1, k1, . . . , kd−1〉 ,

we get that vM =

〈1, e1

2m−k
, . . . ,

ed−1

2m−k
,
ed

2m−k
,
ede1

22(m−k)
, . . . ,

eded−1

22(m−k)
, 0, . . . , 0〉 .

Therefore, vM is a lattice point with 2n + 2 non-zero entries, all of which are smaller

than 1 (since |ei| ≤ p/2k+1 < 2m−k), so its Euclidean norm is smaller than
√

2n+ 2.

The determinant of the lattice is pn

2(m−k)(3n+1) . We apply the heuristic assumption for

69

short lattice vectors and expect that vM is the shortest vector if

√
2n+ 2�

√
3n+ 2

(
2(k−m)(3n+1)pn

)1/(3n+2)

.

Substituting p = 2m+O(1) and ignoring lower terms we get 2k � 22m/3, and so we expect

that vM is the shortest lattice vector when we get more than 2
3
m bits. Therefore, this

becomes a problem of recovering the shortest lattice vector.

Notice that even though we end with a polynomial, this lattice approach treats each

monomial individually, so one can think of these polynomials as multilinear functions,

with the number of variables as the number of monomials (minus the constant coefficient),

hence the use of term “linearization”.

This method has turned into a rigorous method in [61] (in fact, earlier implementation

appears in [11, 12]). Section 7.1 below uses this rigorous approach to solve the elliptic

curve hidden number problem. For now, we highlight the key steps in this approach.

Step 0: We assume that the secret value s does not belong to a set of small (constant)

cardinality of exceptional values. This set can be described by its elements and is in-

dependent of s. Hence, one can range over each element to check if it is the secret, i.e.

test if it is consistent with all samples, or just fail with a negligible probability (first

randomising the secret).

Step 1: Using the given samples, one constructs polynomials for which a root (mod p)

of bounded size corresponds to the missing information on s · ti.

Step 2: From these polynomials one constructs a certain lattice that contains a certain

vector e, generated by these roots. Since the roots are bounded in size, this vector is a

very short vector in the lattice.

Step 3: A short lattice vector f is found using existing algorithms. As e and f are short

lattice vectors, we expect them to be parallel, i.e. a scalar multiple of one another. In

practice it is sufficient that certain coordinates differ by a scalar multiple (so f is a linear

combination of e and some other small vector consists of several zero coordinates). We

show that this is the case unless the multipliers belong to another exceptional set (which

is defined as a set of zeros of a certain family of polynomials), that its cardinality depends

on the size bound of the roots.

Step 4: We compute this scalar by observing the first coordinate of e and f . We then

compute ei by observing specific coordinates of e and f .

70

Step 5: Once a candidate for ei is obtained, one can derive a candidate the secret s and

test if it is consistent with all samples. The probability of the existence of s′ 6= s which is

consistent with all samples can be shown to be negligibly small, given sufficiently many

samples.

The method presented above assumes that ej, 1 ≤ j < d, is used to satisfy only a

single relation of the form (7.1). We finish this section with an analysis of cases where

the ej’s satisfy more than one relation. This analysis is used later on.

From the heuristic arguments above we see that the bound on the errors ei is derived

from some proportion between the determinant of the lattice and the Euclidean norm of

the vector v. In cases where we have more relations that are satisfied by the the same

root, we get a lattice of larger determinant (as its dimension is larger), but the norm of

v is unchanged (it consists of more zeros). It is therefore important that the generating

set for the lattice is linearly independent, as otherwise one would construct a lattice with

determinant zero. More formally, suppose that for 1 ≤ ` ≤ r the polynomials

F `
j (X, Y) = A`jXY +B`

jX + C`
jY +D`

j (7.2)

satisfy F `
j (e1, ej) ≡ 0 (mod p) for some A`j, B

`
j , C

`
j , D

`
j.

It is not necessary that all polynomials are of the same form or satisfied by the

same root, only that the r relations F `
j do not introduce too many values ej that have

not been previously used. Moreover, we note that it only makes sense to discuss about

polynomials of total degree greater than 1 (where we have a monomial that contains some

product eiej), as otherwise there are simpler techniques to solve linear systems, like those

presented in Chapter 5. We restrict this discussion to polynomials which are satisfied by

the same root. In this case, if the system {F `
j }r`=1 consists of w variables, then r can be

at most w, as otherwise the system is not independent.

Similar to above, the solutions to the system of these nr polynomials in (7.2) can be

represented by a lattice M of dimension 2n+ nr + 2 of the structure

M =

(
E R

0 P

)

where E and P are as above, but P is of dimension nr, and R is a (2n+ 2)× nr matrix.

For example, for n = 2, r = 2 we get the matrix

71

M =

1 0 0 0 0 0 D1
1 D2

1 D1
2 D2

2

0 2k−m 0 0 0 0 C1
1 C2

1 0 0

0 0 2k−m 0 0 0 0 0 C1
2 C2

2

0 0 0 2k−m 0 0 B1
1 B2

1 B1
2 B2

2

0 0 0 0 22(k−m) 0 A1
1 A2

1 0 0

0 0 0 0 0 22(k−m) 0 0 A1
2 A2

2

0 0 0 0 0 0 p 0 0 0

0 0 0 0 0 0 0 p 0 0

0 0 0 0 0 0 0 0 p 0

0 0 0 0 0 0 0 0 0 p

.

The analysis is as above where now the vector v is of the form

v := 〈1, e1, . . . , ed−1, ed, ede1, . . . , eded−1, k1, . . . , k(d−1)r〉 .

We get that vM =

〈1, e1

2m−k
, . . . ,

ed−1

2m−k
,
ed

2m−k
,
ede1

22(m−k)
, . . . ,

eded−1

22(m−k)
, 0, . . . , 0〉

is a lattice point with 2n + 2 non-zero entries, all of which are smaller than 1, so its

Euclidean norm is smaller than
√

2n+ 2 as before. On the other hand, the determinant

of M has grown be a factor of pn(r−1) as its value is pnr

2(m−k)(3n+1) .

Once again, we apply the heuristic assumption for short lattice vectors and expect

that vM is the shortest vector if

√
2n+ 2�

√
2n+ nr + 2

(
2(k−m)(3n+1)pnr

)1/(2n+nr+2)

.

As above, we expect that vM is the shortest lattice vector when we get more than (3−r)
3
m

bits, where 1 ≤ r ≤ 2.

More generally, the heuristic implies that the shortest vector should satisfy

‖vec‖ �
√
dim det1/dim ,

where vec is the short vector, dim is the dimension of the lattice and det is the determinant

of the lattice. Expressing the determinant as 2(k−m)(an+c)prn and the dimension as (b +

r)n+ d we get
‖vec‖√
dim

�
(

2(k−m)(an+c)prn
)1/(b+r)n+d

.

As shown above, we can always have a vector which its Euclidean norm is smaller than

72

√
dim, and so we eventually get that

k >
a− r
a

m ,

where it always holds that r ≤ w < a for the number of variables w, as the system is

non-linear.

An important conclusion from this method is that the form of the polynomials F

crucially affects the result. The result becomes weaker (k becomes larger) the larger the

degree is or the more monomials and variables there are. Indeed, all of the above affect

the value a, and in the simplest case where r = 1, we see that one needs k > (1− 1
a
) log(p).

7.1 Elliptic Curve Hidden Number Problem

In this section we study the elliptic curve hidden number problem. Here, the group in

the hidden number problem is the group of elliptic curve points over a finite field and

the operation is the elliptic curve addition law. This specialisation of the hidden number

problem is the following.

EC-HNP(DH): Fix a prime p, a positive integer m, an elliptic curve E over

Fpm , a point Q ∈ E and R ∈ 〈Q〉. Let f be a function over E, let P ∈ E be

unknown and let OP,R be an oracle that on input t computes f on the sum

P + [t]R in E. That is, OP,R(t) = f(P + [t]R). Recover P given query access

to the oracle OP,R.

In this section we only consider elliptic curve over prime fields. This is the case of

greatest interest. In Section 7.1.3 we address the general case. While elliptic curve points

consist of 2 coordinates, it is very common to consider only one. One of the natural

problems is to take f in EC-HNP(DH) to output some most significant bits of one of the

coordinates of its input. We formulate the problem as follows for ψ ∈ {x, y}.

EC-HNPψ(DH): Fix a prime p, an elliptic curve E over Fp, a point R ∈ E and

a positive number k. Let P ∈ E be unknown and let OP,R be an oracle that

on input t computes the k most significant bits of the ψ-coordinate of P+[t]R.

That is, OP,R(t) = MSBk((P + [t]R)ψ). Recover P given query access to the

oracle OP,R.

As elliptic curve cryptography is of great use, this problem is of great interest. Nev-

ertheless, very little is known about this problem. There are no known (non-trivial)

solutions to this problem, even for large k’s. It was first addressed by Boneh, Halevi

73

and Howgrave-Graham [15], in a greater generality where “Diffie–Hellman access” is

not given. They give no solution to the problem, but claim that it can be solved with

k > (1− ε) log(p) for ε ≈ 0.02. They also suggest that heuristically it can be solved with

k > 3
5

log(p) using ideas based on Coppersmiths method, similar to those described above.

However, in order to obtain more relations one has to assume their linear independence.

Related problems have been addressed in [16, 49] (see Chapter 6); the extension-field case

was considered in [48] (see Section 7.1.3).

We give a polynomial-time solution to EC-HNPx(DH) for k > 5
6

log(p). That is, if

for some fixed ε > 0 one takes k > (5
6

+ ε) log(p) for sufficiently large p. We divide the

proof into two parts. The main part is Theorem 7.1, that gives an algorithm to solve

EC-HNPx(DH) up to a certain failure probability. This probability becomes lower than 1

once k > 5
6

log(p), and vanishes asymptotically with log(p). We give a precise statement

of the latter in Corollary 7.5. As achieving bit security for Diffie–Hellman schemes can

be reduced to hidden number problems (as explained in Chapter 4), we get a bit security

result for prime-field elliptic curve Diffie–Hellman. We give a formal statement for this

bit security result in Theorem 7.6.

7.1.1 Exposition

Turning the symbolic expressions in EC-HNPx(DH) into algebraic expression, one has

access to the function

OP,R(t) := MSBk((P + [t]R)x ≡

(
yP − yQ
xP − xQ

)2

− xP − xQ − e (mod p) ,

where Q := [t]R, and e, as a function of t, is a random integral value satisfying |e| ≤ p
2k+1

(here we turn MSBk into APPRk as discussed in Chapter 4).

The first apparent obstacle in approaching this problem is the non-linearity of this

expression. Let h := MSBk((P + [t]R)x. One can use the linearization approach to form

a polynomial from the expression

(h+e+xP+xQ)(xP−xQ)2 ≡ (yP−yQ)2 ≡ y2
P−2yPyQ+y2

Q ≡ x3
p+axP+b−2yPyQ+y2

Q (mod p) ,

that vanishes on the triple (e, xP , yP). However, we get products of the bounded e with

the unbounded xp and an unbounded unknown yp. Since we can query on t = 0 to get

h0 := MSBk(Px) ≡ xP − e0, we can substitute xP ≡ h0 + e0. One way to eliminate yP is

to express

yp ≡ (2yQ)−1
(
x3
p + axP + b+ y2

Q − (h+ e+ xP + xQ)(xP − xQ)2
)
.

74

Then substitute this value in the other relations. Alternatively, squaring both sides

will give y2
p ≡ x3

p + axp + b on the left-hand side. Both of these approaches will yield

very unappealing polynomials with many more monomials and either another bounded

unknown or a larger degree. Recall that the polynomial structure, i.e. its degree and the

number of monomials and variables, drastically affect the result that one can achieve.

We propose an alternative way to eliminate yP , while minimizing the polynomial

structure. Using two correlated relations, we form one polynomial of (total) degree 3 as

above, but with only 6 monomials and 2 bounded unknowns, one of which is twice as

large. The following describes this approach.

Eliminating yP

For some integer t consider the pair Q = [t]R,−Q = [−t]R ∈ E, and suppose P 6= ±Q.

Let P = (xP , yP) and Q = (xQ, yQ), therefore −Q = (xQ,−yQ), and write sP+Q =
yP−yQ
xP−xQ

and sP−Q =
yP−y−Q
xP−x−Q

=
yP+yQ
xP−xQ

. The following operations take place in Fp.

(P +Q)x + (P −Q)x = s2
P+Q − xP − xQ + s2

P−Q − xP − xQ

=

(
yP − yQ
xP − xQ

)2

+

(
yP + yQ
xP − xQ

)2

− 2xP − 2xQ

=
(yP − yQ)2

(xP − xQ)2
− xP − xQ +

(yP + yQ)2

(xP − xQ)2
− xP − xQ

= 2

(
y2
P + y2

Q

(xP − xQ)2
− xP − xQ

)
= 2

(
xQx

2
P + (a+ x2

Q)xP + axQ + 2b

(xP − xQ)2

)
.

(7.3)

Constructing Polynomials with Small Roots

Write h0 = MSBk(xP) = xP − e0, h = MSBk((P + Q)x) = (P + Q)x − e and h′ =

MSBk((P − Q)x) = (P − Q)x − e′. Letting h̃ = h + h′ and ẽ = e + e′ and plugging

xP = h0 + e0 in (7.3) we get

h̃+ ẽ = (P +Q)x + (P −Q)x

= 2

(
xQ(h0 + e0)2 + (a+ x2

Q)(h0 + e0) + axQ + 2b

(h0 + e0 − xQ)2

)
.

Multiplying by (h0 + e0 − xQ)2 and rearranging we get that the following bivariate poly-

nomial

F (X, Y) = X2Y + (h̃− 2xQ)X2 + 2(h0 − xQ)XY + 2[h̃(h0 − xQ)− 2h0xQ − a− x2
Q]X

+ (h0 − xQ)2Y + [h̃(h0 − xQ)2 − 2h2
0xQ − 2(a+ x2

Q)h0 − 2axQ − 4b]

75

satisfies F (e0, ẽ) ≡ 0 (mod p).

Repeating with n different Qi leads to n polynomials of the form

Fi(X, Y) = X2Y + AiX
2 + A0,iXY +BiX +B0,iY + Ci , (7.4)

that satisfy Fi(e0, ẽi) ≡ 0 (mod p).

Recall that our aim is to find small roots for Fi; if one of these roots satisfies X = e0,

we can substitute in h0 and recover xP . Heuristic arguments, similar to those presented

for MIHNP above, can be used to show that one expects to find a short vector that

contains these roots for k > 5
6

log(p). Details for this approach are described in [77,

Section 4.2]. We now turn to the formal statements and proofs.

7.1.2 Main Results

Theorem 7.1. Let E be an elliptic curve over a prime field Fp, let n be an integer and k a

real number. Let an unknown P = (xP , yP) ∈ E\{O} and a known generator R ∈ E\{O}
be points on the curve. Let O be a function such that O(t) = MSBk((P + [t]R)x), and

denote Qi := [ti]R. Then, given a γ-SVP algorithm, there exists a randomised polynomial-

time algorithm that recovers the unknown xP with 2n + 1 calls to O and a single call to

the γ-SVP algorithm on a (3n + 3)-dimensional lattice with polynomially bounded basis,

except with probability

P1 ≤
8n(6η∆ + 1)6n+3

(p− 2
√
p− 2)n

+
16(6η∆ + 1)6

p− 2
√
p− 2

+
2n+ 3

p− 2
√
p

over the choices of xQ1 , . . . , xQn, when it returns no answer or a wrong answer, where

η = 2γ
√

3n+ 1 and ∆ = d p
2k+1 e.1 If the correct x-coordinate xP has been recovered, the

algorithm determines which of the two candidates ±yP is the correct y-coordinate, except

with probability

P2 ≤
(16∆)n

(p− 2
√
p− 2)n

over the choices of xQ1 , . . . , xQn.

Remark 7.2. In Theorem 7.1, as in the Corollary 7.5 below, R is taken to be a generator

of E in order to give precise bounds on the probabilities. Both results hold even if R is

not a generator of E, as long as it generates a “large enough” subgroup. The size of the

subgroup appears in the denominator of the probabilities bounds (see footnote 2), and so

the results also hold if the subgroup’s order is greater than p/poly(log(p)), for example.

For substantially smaller subgroups, one would need to adjust the value for k.

1As the matter of exact precision is not important, we set ∆ to be an integer.

76

The proof of Theorem 7.1 is rather technical. We first give an overview of the key

steps in the proof.

Overview

In the algorithmic part:

� Exceptional values for P are those for which yP = 0 (follows from Claim 7.3).

� Using O, we construct the polynomial relations (as in (7.4) above)

Fi(X, Y) = X2Y + AiX
2 + A0,iXY +BiX +B0,iY + Ci

for which Fi(e0, ẽi) ≡ 0 (mod p).

� Using these relations, we construct a lattice (see (7.6)), such that the vector

e := (∆3,∆2e0,∆
2ẽ1, . . . ,∆

2ẽn,∆e
2
0,∆e0ẽ1, . . . ,∆e0ẽn, e

2
0ẽ1, . . . , e

2
0ẽn)

is a short lattice vector.

� We run a γ-SVP algorithm on the lattice to receive a short lattice vector

f := (∆3f ′0,∆
2f0,∆

2f1 . . . ,∆
2fn,∆f0,0,∆f0,1, . . . ,∆f0,n, f00,1, . . . , f00,n) .

As e and f are two short lattice vectors, we expect them to be a (scalar) multiple

of each other.

� Supposing this is the case, the scalar f ′0 is found by observing the first coordinate

of e and f . We then compute e0 = f0/f
′
0 provided f ′0 6= 0.

� From the relation h0 = xP − e0 we derive xP = h0 + e0.

The second part of the proof analyzes the success probability of the algorithm, as follows:

� We present 3 events for which the algorithm fails. The first (yP = 0) has negligible

probability.

� To derive the probability of the other events we form a certain family of low-degree

polynomials (see (7.14)), for which we are interested in their set of zeros. The

number of polynomials in the family is a function of ∆ = d p
2k+1 e, and so a function

of k.

� Claim 7.3 shows that if yP 6= 0, then the polynomials are not identically zero.

77

� We show that these events occur if the points xQi are roots of some of these poly-

nomials. Thus, we derive an exact expression of the probability of these events to

hold.

The last part of the proof shows how one can determine the correct value for yP using a

consistency check with all of the given values.

Proof. Assume without loss of generality 3η∆ ≤ 3η∆3 < p, as otherwise the bound on

the probability makes the claim trivial, and that the unknown P is chosen at random

(as it can be self-randomised). Throughout, unless stated otherwise, i, j are indices such

that 1 ≤ i ≤ n and 0 ≤ j ≤ n. Set t0 = 0, choose ti ∈ [1,#E − 1] independently and

uniformly at random, and query the oracle O on ±tj to get the 2n + 1 values O(±tj)
denoted by h0 = MSBk(Px) = xP − e0, hi = MSBk((P + Qi)x) = (P + Qi)x − ei and

hi′ = MSBk((P − Qi)x) = (P − Qi)x − ei′ , for some integers −∆ ≤ ej, ei′ ≤ ∆. Denote

h̃i = hi + hi′ and ẽi = ei + ei′ , and suppose P 6= ±Qi.

The following has been shown in Section 7.1.1. For every 1 ≤ i ≤ n, one has

h̃i + ẽi = hi + ei + hi′ + ei′ = (P +Qi)x + (P −Qi)x

≡ 2

(
xQi(h0 + e0)2 + (a+ x2

Qi
)(h0 + e0) + axQi + 2b

(h0 + e0 − xQi)2

)
(mod p) .

Consider the polynomials

Fi(X, Y) := X2Y + AiX
2 + A0,iXY +BiX +B0,iY + Ci ,

where (all congruences hold mod p)

Ai ≡ h̃i − 2xQi ,

Bi ≡ 2[h̃i(h0 − xQi)− 2h0xQi − a− x2
Qi

] ,

Ci ≡ h̃i(h0 − xQi)2 − 2((h2
0 + a)xQi + (a+ x2

Qi
)h0 + 2b) .

A0,i ≡ 2(h0 − xQi) ,

B0,i ≡ (h0 − xQi)2, and

It holds that F (e0, ẽi) ≡ 0 (mod p) for every 1 ≤ i ≤ n. As e0, ẽi are relatively small, one

hopes that finding a small solution to one of these polynomials would allow to recover e0

and subsequently P . To achieve this goal, we use these relations to construct a lattice

and apply the γ-SVP algorithm.

Formally, we start by ‘balancing’ the coefficients (as lattice basis reduction algorithms

78

work better where all the coefficients are of similar size). For every 1 ≤ i ≤ n, set

ai ≡ ∆−1Ai (mod p) , a0,i ≡ ∆−1A0,i (mod p) ,

bi ≡ ∆−2Bi (mod p) , b0,i ≡ ∆−2B0,i (mod p) , and

ci ≡ ∆−3Ci (mod p) .

(7.5)

The vector

e = (∆3,∆2e0,∆
2ẽ1, . . . ,∆

2ẽn,∆e
2
0,∆e0ẽ1, . . . ,∆e0ẽn, e

2
0ẽ1, . . . , e

2
0ẽn)

belongs to the lattice L consisting of solutions

x = (x′0, x0, x1, . . . , xn, x0,0, x0,1, . . . , x0,n, x00,1, . . . , x00,n) ∈ Z3n+3

of the congruences

cix
′
0 + bix0 + b0,ixi + aix0,0 + a0,ix0,i + x00,i ≡ 0 (mod p), 1 ≤ i ≤ n ,

x′0 ≡ 0 (mod ∆3) ,

xj ≡ 0 (mod ∆2) 0 ≤ j ≤ n , and

x0,j ≡ 0 (mod ∆) 0 ≤ j ≤ n .

The lattice L is generated by the rows of a (3n + 3) × (3n + 3) matrix M of the

following structure:

M =

∆2 0 M1

0 ∆ M2

0 0 P

 (7.6)

where ∆2, ∆ and P are diagonal square matrices of dimensions n + 2, n + 1 and n,

respectively, such that the diagonal of P consists of the prime p, the matrix ∆ consists

of ∆ and the matrix ∆2 of ∆2, except of the first diagonal entry which is ∆3; and the

79

matrices M1 and M2 are of dimensions (n+ 2)× n and (n+ 1)× n respectively, given by

M1 =

−C1 −C2 . . . −Cn
−B1 −B2 −Bn

−B0,1 0 0

0 −B0,2

... 0
. . .

...

0 0 −B0,n

, M2 =

−A1 −A2 . . . −An
−A0,1 0 0

0 −A0,2
...

... 0
. . .

...

0 0 −A0,n

.

As |ẽi| = |ei + ei′| ≤ 2∆ for every 1 ≤ i ≤ n, we have

‖e‖ ≤
√

3∆6 + 12n∆6 =
√

3 + 12n∆3 ≤ 2∆3
√

3n+ 1 .

Run the γ-SVP algorithm and denote the vector it outputs by

f = (∆3f ′0,∆
2f0,∆

2f1 . . . ,∆
2fn,∆f0,0,∆f0,1, . . . ,∆f0,n, f00,1, . . . , f00,n) , (7.7)

where f ′0, fj, f0,j, f00,i ∈ Z. Notice that

‖f‖ ≤ γ‖e‖ ≤ 2γ∆3
√

3n+ 1 = η∆3 for η = 2γ
√

3n+ 1 ,

and also that

|f ′0| ≤ ‖f‖∆−3 ≤ η ,

|fj| ≤ ‖f‖∆−2 ≤ η∆ ,

|f0,j| ≤ ‖f‖∆−1 ≤ η∆2 , and

|f00,i| ≤ ‖f‖ ≤ η∆3 .

As e, f are both short lattice vectors, we expect them to be scalar multiples of each other.

Therefore, let

d = f ′0e− f = (0,∆2d0,∆
2d1, . . . ,∆

2dn,∆d0,0,∆d0,1, . . . ,∆d0,n, d00,1, . . . , d00,n) ,

80

where

d0 = f ′0e0 − f0 , |d0| = |f ′0e0 − f0| ≤ η|e0|+ |f0| ≤ η∆ + η∆ = 2η∆ ,

di = f ′0ẽi − fi , |di| = |f ′0ẽi − fi| ≤ η|ẽi|+ |fi| ≤ η2∆ + η∆ = 3η∆ ,

d0,0 = f ′0e
2
0 − f0,0 , |d0,0| = |f ′0e2

0 − f0,0| ≤ η|e0|2 + |f0,0| ≤ η∆2 + η∆2 = 2η∆2 , (7.8)

d0,i = f ′0e0ẽi − f0,i , |d0,i| = |f ′0e0ẽi − f0,i| ≤ η|e0ẽi|+ |f0,i| ≤ η2∆2 + η∆2 = 3η∆2 , and

d00,i = f ′0e
2
0ẽi − f00,i , |d00,i| = |f ′0e2

0ẽi − f00,i| ≤ η|e2
0ẽi|+ |f00,i| ≤ η2∆3 + η∆3 = 3η∆3 .

Notice that if f ′0 6= 0 and also one of the coordinates of d (except of the first one) is zero,

we can recover some previously unknown information. More precisely, suppose f ′0 6= 0,

then

If d0 = 0, then e0 = f0/f
′
0 ; (7.9)

If di = 0, then ẽi = fi/f
′
0 , 1 ≤ i ≤ n ; (7.10)

If d0,0 = 0, then e2
0 = f0,0/f

′
0 ; (7.11)

If d0,i = 0, then e0ẽi = f0,i/f
′
0 , 1 ≤ i ≤ n ; (7.12)

If d00,i = 0, then e2
0ẽi = f00,i/f

′
0 , 1 ≤ i ≤ n . (7.13)

As ẽi = ei + ei′ it is unclear how to use these values in general to recover the secret xP .

We therefore focus on e0, from which we derive xP . One can recover e0 from (7.9), by

combining (7.10) and (7.12) (e0 = f0,i/fi), combining (7.12) and (7.13) (e0 = f00,i/f0,i),

or, up to sign, from (7.11), or by combining (7.10) and (7.13) (e2
0 = f00,i/fi). However,

for the sake of the proof we only focus on (7.9), thus in case f ′0 6= 0 we take h0 + f0/f
′
0 as

the candidate for xP , and if f ′0 = 0, we fail. We remark that a more involved approach

can be taken (to determine e0 and in the case f ′0 = 0), using the consistency check we

present below.

A pseudocode for the algorithm that recovers xP is the following.

Algorithm 1: Find xP
1: Construct a lattice, generated by the rows of the matrix M as in (7.6).

2: Run the γ-SVP algorithm on the lattice to get the vector f as in (7.7).

3: if f ′0 6= 0 then
return h0 + f0/f

′
0

else
Fail

Probability of failure

We now define the following events:

81

(E-1) yP = 0;

(E-2) d0 6= 0 and (E-1) does not hold;

(E-3) f ′0 = 0 and (E-1) and (E-2) do not hold.

It is clear that if none of the events hold, one can recover xP . The requirement yP 6= 0

will be made clear in Claim 7.3 below.

As there are at most 3 values for xP ∈ Fp that satisfy the equation x3
P + axP + b ≡ 0

(mod p), and since P is assumed to be chosen uniformly at random, the probability that

(E-1) holds satisfies

Pr[(E-1)] ≤ 3

#E − 1
≤ 3

p− 2
√
p
.

In order to derive a bound on the probability of the other events we form some useful

equations. As

ci∆
3 + bi∆

2e0 + b0,i∆
2ẽi + ai∆e

2
0 + a0,i∆e0ẽi + e2

0ẽi ≡ 0 (mod p), 1 ≤ i ≤ n ,

and

ci∆
3f ′0 + bi∆

2f0 + b0,i∆
2fi + ai∆f0,0 + a0,i∆f0,i + f00,i ≡ 0 (mod p), 1 ≤ i ≤ n ,

we get (by the definition of d)

bi∆
2d0 + b0,i∆

2di + ai∆d0,0 + a0,i∆d0,i + d00,i ≡ 0 (mod p), 1 ≤ i ≤ n ,

and therefore (using (7.5) above)

Bid0 +B0,idi + Aid0,0 + A0,id0,i + d00,i ≡ 0 (mod p), 1 ≤ i ≤ n .

Multiplying by (xP − xQi)2 and using the definitions for Ai, A0,i, Bi and B0,i we get

(xP − xQi)2
(

2[h̃i(h0 − xQi)− 2h0xQi − a− x2
Qi

]d0 + (h2
0 − 2h0xQi + x2

Qi
)di

+ (h̃i − 2xQi)d0,0 + 2(h0 − xQi)d0,i + d00,i

)
≡ 0 (mod p), 1 ≤ i ≤ n ,

which simplifies, as a polynomial in xQi , to

Uix
4
Qi
− Vix3

Qi
+Wix

2
Qi

+ YixQi + Zi ≡ 0 (mod p), 1 ≤ i ≤ n , (7.14)

82

where (all congruences hold mod p)

Ui ≡ di − 2d0 ,

Vi ≡ 2(2xP − 2e0 − ẽi)d0 + (4xP − 2e0)di + 2d0,0 + 2d0,i ,

Wi ≡ 2(3x3
P − 6e0xP − 3ẽixP + e0ẽi − 3a)d0 + (6x2

P − 6e0xP + e2
0)di + (6xP − ẽi)d0,0

+ (6xP − 2e0)d0,i + d00,i ,

Yi ≡ 2(3ẽix
2
P − 2e0ẽixP + 2axP − 2ae0 − 4b)d0 − 2(2x3

P − 3e0x
2
P + e2

0xP)di (7.15)

+ (2ẽixP + 2a)d0,0 − (6x2
P − 4e0xP)d0,i − 2xPd00,i , and

Zi ≡ 2(−ẽix3
P + e0ẽix

2
P + ax2

P − 2ae0xP + 4bxP − 4be0)d0 + (x4
P − 2e0x

3
P + e2

0x
2
P)di

+ (−ẽix2
P + 2axP + 4b)d0,0 + (2x3

P − 2e0x
2
P)d0,i + x2

Pd00,i .

We now show that if for some 1 ≤ i ≤ n the left hand side of (7.14) is the constant

zero polynomial, then d0 = 0 = d0,0. We conclude that if d0 6= 0 or d0,0 6= 0, then the left

hand side of (7.14) is a non-constant polynomial in xQi (of degree at most 4) for every

1 ≤ i ≤ n.

Claim 7.3. Let 1 ≤ i ≤ n, and assume yP 6= 0. The left hand side of (7.14) is constant

if and only if d0 = d0,0 = di = d0,i = d00,i = 0.

Proof. The first implication is clear from (7.15). Suppose that the left hand side of (7.14)

is constant for some 1 ≤ i ≤ n. Then Ui ≡ Vi ≡ Wi ≡ Yi ≡ Zi ≡ 0 (mod p). One can

express the latter as a system of 5 equations in the 5 variables d0, di, d0,0, d0,i and d00,i. A

non-zero solution exists if and only if the system is singular. We show that the system is

nonsingular if and only if yP 6= 0, which completes the proof.

We use the first 4 equations to eliminate di, d0,i, d00,i and remain with the “global”

variables d0, d0,0. One then has

−2(2x3
P + 3e0x

2
P + 2axP + ae0 + 2b)d0 + (3x2

P + a)d0,0 ≡ 0 (mod p) ,

which simplifies to

−4yPd0 − 2e0(3x2
P + a)d0 + (3x2

P + a)d0,0 ≡ 0 (mod p) .

If 3x2
P +a ≡ 0 (mod p), then yPd0 ≡ 0 (mod p). Otherwise, one can express d0,0 in terms

of d0. Plugging this value, with the other recovered variables, to the last equation, one

gets

(x6
P + 2ax4

P + 2bx3
P + a2x2

P + 2abxP + b2)d0 ≡ y4
Pd0 ≡ 0 (mod p) .

In both cases, since yP 6= 0, we have d0 ≡ d0,0 ≡ di ≡ d0,i ≡ d00,i ≡ 0 (mod p), and since

83

all of these values are of size smaller than p (as we suppose 3η∆ < 3η∆3 < p), the claim

follows.

We use this claim to bound the probabilities of (E-2) and (E-3), which will prove the

first claim in the theorem. The probability of events (E-2) and (E-3) is taken over the

choice of the points Qi for 1 ≤ i ≤ n. That is, we consider the number of n-tuples

(xQ1 , . . . , xQn) ∈
(
Ex \ {xP}

)n
such that (E-2) holds or (E-3) holds, where Ex := {z ∈ Fp | ∃Q ∈ E,Qx = z}.2 Note

that #E − 1 ≤ 2|Ex| ≤ #E + 2.

Probability of event (E-2). Assume (E-2) holds, that is d0 6= 0 and yP 6= 0, and fix

some values of dj, d0,j for 0 ≤ j ≤ n and d00,i for 1 ≤ i ≤ n. Let us consider the number

of n-tuples

(xQ1 , . . . , xQn) ∈
(
Ex \ {xP}

)n
satisfying (7.14).

Since d0 6= 0 Claim 7.3 shows that the left hand side of (7.14) is non-constant for all

1 ≤ i ≤ n. Thus, as all the relations in (7.14) are satisfied, there are at most 4 values

xQi that satisfy each relation, and so there are at most 4n n-tuples that satisfy these n

non-constant polynomials.

From (7.8) above we get: as d0 6= 0 it can take at most 4η∆ values, each di can take

at most 6η∆ + 1 values, d0,0 can take at most 4η∆2 + 1 values, each d0,i can take at most

6η∆2 + 1 values, and each d00,i can take at most 6η∆3 + 1 values. Therefore, there are

at most

4n4η∆(6η∆ + 1)n(4η∆2 + 1)(6η∆2 + 1)n(6η∆3 + 1)n <

4n4η∆(6η∆ + 1)n(4η∆ + 1)2(6η∆ + 1)2n(6η∆ + 1)3n < 4n(6η∆ + 1)6n+3

n-tuples (xQ1 , . . . , xQn) for which event (E-2) happens. Denote them by Q. The proba-

bility that d0 6= 0 (given yP 6= 0) satisfies

Pr[(E-2)] ≤ |Q|∣∣Ex \ {xP}∣∣n < 4n(6η∆ + 1)6n+3(
1
2
(#E − 1)− 1

)n ≤ 8n(6η∆ + 1)6n+3

(p− 2
√
p− 2)n

.

Probability of event (E-3). Assume (E-3) holds, that is f ′0 = 0, d0 = 0 and yP 6= 0.

We may suppose that for all the n-tuples in Q event (E-3) holds, and thus consider the

remaining n-tuples which are not in Q. We first notice that d0,0 = 0. Indeed, if d0,0 6= 0,

2 In the case that R is not a generator of E, one would define Ex := {z ∈ Fp | ∃Q ∈ 〈R〉, Qx = z}.
Proving the theorem for any R boils down to proving that the roots of (7.14) are not restricted to Ex.

84

then by Claim 7.3 the left hand side of (7.14) is non-constant for all 1 ≤ i ≤ n. In that

case, the only n-tuples that satisfy (7.14) are in Q. We therefore have f0 = f ′0e0 − d0 =

0 = f ′0e
2
0 − d0,0 = f0,0.

Consider the set S = {i ∈ {1, . . . , n} | di = d0,i = d00,i = 0}. Let l = |S|, and notice

that if l = n then f0 = fi = f0,0 = f0,i = f00,i = 0, and since f ′0 = 0 by assumption then

f = 0. As f is a non-zero vector by construction, l < n.

Fix some values of di, d0,i, d00,i for 1 ≤ i ≤ n. We now consider the number of n-tuples

(xQ1 , . . . , xQn) /∈ Q

satisfying (7.14). If i ∈ S then the left hand side of (7.14) is the constant zero, and so

there are |Ex| − 1 possible values for xQi satisfying (7.14). If i /∈ S then either di 6= 0

or d0,i 6= 0 or d00,i 6= 0 and by Claim 7.3 the left hand side of (7.14) is non-constant, so

there are at most 4 solutions xQi to the corresponding equation in (7.14).

Overall, there are at most 4n−l(|Ex| − 1)l n-tuples (xQ1 , . . . , xQn) /∈ Q that satisfy

(7.14). The possible values for each di, d0,i, d00,i for each i /∈ S are given above. So overall

there are at most

4n−l(|Ex| − 1)l(6η∆ + 1)n−l(6η∆2 + 1)n−l(6η∆3 + 1)n−l <

4n−l(|Ex| − 1)l(6η∆ + 1)n−l(6η∆ + 1)2(n−l)(6η∆ + 1)3(n−l) = 4n−l(|Ex| − 1)l(6η∆ + 1)6(n−l)

n-tuples (xQ1 , . . . , xQn) /∈ Q for which event (E-3) happens. Denote them by Q′. Over

these tuples (not in Q), the probability that f ′0 = 0 (given d0 = 0 and yP 6= 0) is bounded

by

|Q′|∣∣Ex \ {xP}∣∣n ≤
n−1∑
l=0

(
4(6η∆ + 1)6

|Ex| − 1

)n−l

≤
n∑
l=1

(
4(6η∆ + 1)6

1
2
(#E − 1)− 1

)l

=

n∑
l=1

(
1

2

16(6η∆ + 1)6

#E − 3

)l

≤
n∑
l=1

(
1

2

)l(
16(6η∆ + 1)6

p− 2
√
p− 2

)l

.

If 16(6η∆+1)6

p−2
√
p−2

< 1, then the latter is smaller than 16(6η∆+1)6

p−2
√
p−2

. In any case we get that this

probability is bounded by
16(6η∆ + 1)6

p− 2
√
p− 2

.

We finally get that the probability that event (E-3) happens satisfies

Pr[(E-3)] ≤ |Q|∣∣Ex \ {xP}∣∣n +
|Q′|∣∣Ex \ {xP}∣∣n < 8n(6η∆ + 1)6n+3

(p− 2
√
p− 2)n

+
16(6η∆ + 1)6

p− 2
√
p− 2

.

85

Notice that the probability that Qi = ±P for some 1 ≤ i ≤ n is

2

#E − 1
≤ 2

p− 2
√
p
.

Thus, the probability that Qi = ±P for any 1 ≤ i ≤ n is bounded by

2n

p− 2
√
p
.

This concludes the first claim in the theorem.

Now suppose xP has been recovered. In order to determine which of the two values

±
√
x3
P + axP + b is the correct y-coordinate of P , we run the consistency check, which is

presented below, on both candidates. It is clear that the correct candidate will pass the

test. If both candidates pass the consistency check then we cannot determine the point P .

We analyze the probability of the event in which the incorrect candidate −P = (xP ,−yP)

passes the test.

We consider how many Qi lead the system to be consistent with both ±yP . Recall

that

hi + ei =

(
yQi − yP
xQi − xP

)2

− xP − xQi =
xPx

2
Qi

+ (a+ x2
P)xQi + axP + 2b− 2yQiyP

(xQi − xP)2
.

If −P passes the test, then there exist ēi with |ēi| ≤ ∆ such that hi = (P −Qi)x− ēi, for

all 1 ≤ i ≤ n. We therefore have

hi + ēi =

(
yQi + yP
xQi − xP

)2

− xP − xQi =
xPx

2
Qi

+ (a+ x2
P)xQi + axP + 2b+ 2yQiyP

(xQi − xP)2
.

Subtracting one from the other and multiplying by (xP − xQi)2 we get

(ei − ēi)(xP − xQi)2 = −4yPyQi .

Squaring both sides and rearranging results in

(ei − ēi)2(xP − xQi)4 − 16y2
P (x3

Qi
+ axQi + b) ≡ 0 (mod p) .

This is a non-constant polynomial in xQi of degree 4 and therefore for every ēi there are at

most 4 values for xQi that satisfy this equation. Since there are at most 2∆ possible values

for each ēi, and since we can form n such equations,3 we conclude that the probability

3Notice that we can also form n equations from the values hi′ . For each i each solution xQi
should

86

that the point (xP ,−yP) passes the consistency check is bounded by

4n(2∆)n

(|Ex| − 1)n
≤ (16∆)n

(p− 2
√
p− 2)n

.

This concludes the proof.

Consistency Check – Filtering Impossible Secrets.

We introduce a test that takes a candidate P ′ for the secret point P , and determines

whether P ′ is not the secret. That is, after running the test, P ′ is either guaranteed

not to be P or it is potentially the secret point P . We give a bound on the probability

that the outcome of the test is inconclusive, for P ′ 6= P (it is clear that if P ′ = P the

test is inconclusive). Specifically, given the candidate for xP from Theorem 7.1, one can

test which value (if any) is the correct y-coordinate yP . Moreover, one can test whether

yP 6= 0 or P 6= ±Qi.

Given a candidate P ′ = (xP ′ , yP ′), the consistency check goes over the pairs (Q, h =

MSBk((P + Q)x)) and checks if these values are consistent with the problem’s settings.

That is, we use h to derive a candidate ē for e, and check if |ē| ≤ ∆. Formally, using

h0 = xP − e0 we compute

ē0 := xP ′ − h0 mod p ,

and check if |ē0| ≤ ∆. If so then for every 1 ≤ i ≤ n using hi = MSBk((P + Qi)x) we

compute

ēi :=

(
yP ′ − yQ
xP ′ − xQ

)2

− xP ′ − xQ − hi mod p ,

and check if |ēi| ≤ ∆. We do the same process with hi′ . If at any point this inequality

does not hold, we can stop the test and determine that P ′ 6= P . Otherwise, P ′ passes the

consistency check and is potentially the secret point P .

For completeness, we analyze the probability (over the samples Qi) of the event in

which a candidate P ′ 6= P passes the consistency check. Hence, suppose that P ′ =

(xP ′ , yP ′) passed the consistency check.

Probability of xP ′ 6= xP . Given hi, hi′ , from Section 7.1.1 above we have

hi + hi′ = 2

(
xPx

2
Qi

+ (a+ x2
P)xQi + axP + 2b

(xP − xQi)2

)
− ei − ei′ .

satisfy an additional equation (ei′− ēi′)(xP −xQi)
2 = 4yP yQi . However, adding the two equations results

in the condition ei+ei′− ēi− ēi′ = 0. While this condition can be always satisfied (e.g. ēi′ = ei, ēi = ei′),
the probability it holds depends on the model for the oracle, i.e. how the terms ei, ei′ are generated.

87

Since P ′ passed the consistency check there exist |ēi|, |ēi′ | ≤ ∆ such that

hi + hi′ = 2

(
xP ′x

2
Qi

+ (a+ x2
P ′)xQi + axP ′ + 2b

(xP ′ − xQi)2

)
− ēi − ēi′ .

Subtracting these two equations and multiplying by (xP − xQi)2(xP ′ − xQi)2 we get

(ei + ei′ − ēi − ēi′)(xP − xQi)2(xP ′ − xQi)2 =

2
(

(xPx
2
Qi

+ (a+ x2
P)xQi + axP + 2b)(xP ′ − xQi)2

− (xP ′x
2
Qi

+ (a+ x2
P ′)xQi + axP ′ + 2b)(xP − xQi)2

)
.

By rearranging we get a polynomial in xQi of degree 4. By simple algebra one can check

that this polynomial is identically zero if and only if xP ′ = xP (thus ei+ei′− ēi− ēi′ = 0).

We assume xP ′ 6= xP . Therefore for every ēi, ēi′ there are at most 4 values for xQi that

satisfy this equation. Since there are 2∆ + 1 possible values for each ēi, ēi′ we conclude

that the probability that xP ′ 6= xP is bounded by

4n(2∆ + 1)2n

(|Ex| − 1)n
≤ 2n(4∆ + 2)2n

(p− 2
√
p− 2)n

.

Probability of xP ′ = xP and yP ′ 6= yP . The probability that P ′ = (xP ,−yP) passes

the consistency check, is analyzed at the end of the proof of Theorem 7.1, and shown to

be bounded by
4n(2∆)n

(|Ex| − 1)n
≤ (16∆)n

(p− 2
√
p− 2)n

.

Remark 7.4. In the case in which the value d0 6= 0, the recovered value e := f0/f
′
0 6= e0,

and therefore xP ′ := h + e 6= xP . Running the consistency check on P ′ might reveal that

indeed P ′ 6= P . One can derive from equations (7.10)-(7.13) other candidates for e0 and

subsequently candidates for xP , and apply the consistency check on them. If none of these

candidates pass the consistency check, then one can test P ′ where yP ′ = 0 and P ′ = ±Qi.

We analyze the probability that there exists P ′ 6= P that is consistent with all 2n + 1

samples.

We use the analysis above which shows that the probability that a candidate P ′ with

xP ′ 6= xP passes the test with the 2n equations is bounded by

(4∆ + 2)2n

(|Ex| − 1)n
≤ 2n(4∆ + 2)2n

(p− 2
√
p− 2)n

.

88

We also have xP ′ − ē0 = h0 = xP − e0, so xP ′ = xP − e0 + ē0 can take 2∆ values. Thus,

the probability that any P ′ with xP ′ 6= xP passes the consistency check is bounded by

2n+1∆(4∆ + 2)2n

(p− 2
√
p− 2)n

.

With the above bound for yP ′ 6= −yP we get that the probability that there exists P ′ 6= P

that passes the consistency check is bounded by

2n+1∆(4∆ + 2)2n

(p− 2
√
p− 2)n

+
(16∆)n

(p− 2
√
p− 2)n

.

A corollary of this result is that for k > 5
6

log(p) the success probability becomes

nontrivial, and so we get a polynomial-time solution to EC-HNPx(DH), as we now state

formally. We consider two different SVP approximation algorithms to show the influence

of ε on the running time and the minimum allowed value for p.

Corollary 7.5. Fix 0 < δ ≤ 3ε < 1/2. Let n0 = d 1
6ε
e, p be an m-bit prime, E be an

elliptic curve over Fp and k > (5/6 + ε)m. There exist randomised algorithms Ai, for

i = 1, 2, that solve EC-HNPx(DH) (with MSBk and a generator R) for m ≥ mi, with

probability at least 1− p−δ over the choices of xQ1 , . . . , xQn0 where

m1 = dc1ε
−1 log ε−1e and m2 = dc2ε

−2 (log log ε−1)2

log ε−1
e ,

for some absolute effectively computable constants c1, c2, and their running time is Ti

where

T1 = (2ε
−1

m)O(1) and T2 = (ε−1m)O(1) .

Proof. Consider the bounds on P1 and P2 in Theorem 7.1. One needs 1−P1−P2 ≥ 1−p−δ,
therefore P1 + P2 ≤ p−δ, for the claim to hold. As P2 is smaller than the first bound on

P1 in Theorem 7.1 we get that P1 + P2 is bounded by

2
8n(6η∆ + 1)6n+3

(p− 2
√
p− 2)n

+
16(6η∆ + 1)6

p− 2
√
p− 2

+
2n+ 3

p− 2
√
p
. (7.16)

It is sufficient to bound the latter by p−δ.

Consider the third term in (7.16). For the claim to hold, one needs

2n0 + 3

p− 2
√
p
<

1

pδ
,

from which it is easy to derive the minimal p (thus the minimal bit size m of p) for the

89

condition to hold. We therefore let δ′ such that p−δ
′

= p−δ − 2n0+3
p−2
√
p

(assuming the later

is positive) and bound each of the other terms in (7.16) by p−δ
′

2
. Notice that δ′ > δ.

Plugging p = 2m+O(1) and ∆ = 2m−k+O(1) in the first term (7.16), and since k >

(5/6 + ε)m, we have

2 · 8n(6η∆ + 1)6n+3

(p− 2
√
p− 2)n

=
23n+1(2O(1)η2m−k+O(1) + 1)6n+3

(2m+O(1) − 2m/2+O(1) − 2)n
= η6n+32(6n+3)(m−k+O(1))−(m+O(1))n

≤ η6n+32(6n+3)(m/6−mε+O(1))−(m+O(1))n = 2(6n+3)(log η−mε)+m/2+O(n) .

The latter is smaller than p−δ
′

2
= 2−δ

′(m−1+O(1)) if (6n + 3)(log η − εm) + m/2 + O(n) ≤
−δ′(m+O(1)), which simplifies to (for some sufficiently large absolute constant C0)

(6n+ 3)(ε−m−1(log η + C0)) ≥ δ′ +
1

2
> δ +

1

2
. (7.17)

Using 3ε ≥ δ and n ≥ n0, it is easy to verify that (for a sufficiently large absolute constant

C1)

m > ε−1(2 log η + C1) (7.18)

implies (7.17).

Similarly, to show that the second term in (7.16) is bounded by p−δ
′

2
one gets the

condition (for some sufficiently large absolute constant C2)

6(ε−m−1(log η + C3)) ≥ δ′ > δ ,

which can be shown to hold when (for a sufficiently large absolute constant C3)

m > (6 log η + C3)(6ε− δ)−1 .

The latter is implied by (7.17), therefore by (7.18), provided C0 is large enough.

For A1 we apply the 1-SVP algorithm (with running time Õ(22d)) of Micciancio and

Voulgaris [64] to a lattice of dimension d = 3n0 + 3, which gives η = 2
√

3n0 + 1. For A2,

we use the 2O(d(log log d)2/ log d)-SVP algorithm (with running time Õ(d)) of Schnorr [76] for

the dimension d = 3n0 + 3, which gives η = 2n0+2
√

3n0 + 1. Using n0 = d 1
6ε
e, the bounds

mi follow.

Hardcore Bits for Elliptic Curve Diffie–Hellman

As a consequence, we get a hardcore function for the elliptic curve Diffie–Hellman problem

and the following bit security result for elliptic curve Diffie–Hellman key exchange.

90

Theorem 7.6. Fix 0 < δ ≤ 3ε < 1/2. Let p be an m-bit prime, E be an elliptic curve

over Fp, a point P ∈ E \ {O} of order at least p/poly(log(p)) and k > (5/6 + ε)m. Given

an efficient algorithm to compute MSBk

(
([ab]P)x

)
from [a]P and [b]P , there exists a

polynomial-time algorithm that computes [ab]P with probability at least 1− pδ.

Least Significant Bits of Elliptic Curve Diffie–Hellman Keys

Bit security results are usually symmetric for the most and least significant bits. The aim

of this part is to sketch how one would provide similar results for the lower 5/6 bits of

elliptic curve Diffie–Hellman keys. We consider an elliptic curve hidden number problem

with the oracle O(t) = LSBk((P + [t]R)x).

Recall that as we allow k to take any (positive) real value, we define LSBk by

LSBk(x) := x (mod d2ke). In other words, LSBk(x) gives x mod l for 2 ≤ l = d2ke ≤ p,

not necessarily a power of 2.

Let h = LSBk((P +Q)x) = (P +Q)x mod l = (s2
P+Q − xP − xQ − qp)− le for some

q and |e| < p
2l
≤ p

2k+1 . For u = l−1 ∈ Z∗p we have (where the operations are in Fp)

h : = hu =

(yP − yQ
xP − xQ

)2

− xP − xQ − qp− le

u

= u

(yP − yQ
xP − xQ

)2

− xP − xQ

− q′p− e ≡ u

(yP − yQ
xP − xQ

)2

− xP − xQ

− e .
Now let h0 = LSBk(xP) = xP − le0 and h′ = LSBk((P − Q)x) = (P − Q)x mod l =

(s2
P−Q − xP − xQ − rp)− le′ for some r and |e0|, |e′| < p

2l
≤ p

2k+1 . Then

h′ := h′u ≡ u

(yP + yQ
xP − xQ

)2

− xP − xQ

− e′ (mod p) .

Letting h̃ = h+ h′ and ẽ = e+ e′ and plugging xP = h0 + le0 in (7.3) above we get

h̃+ ẽ = u
(
(P +Q)x + (P −Q)x

)
≡ 2u

(
xQ(h0 + le0)2 + (a+ x2

Q)(h0 + le0) + axQ + 2b

(h0 + le0 − xQ)2

)
(mod p) .

Multiplying by (h0 + le0 − xQ)2 results in a bivariate polynomial in e0, ẽ of degree 3,

similar to (7.4) above. We expect to get similar results to those presented above.

91

The y-coordinate A natural question is whether a similar strong bit security result

can be shown for the y-coordinate of the elliptic curve Diffie–Hellman key. Unfortunately,

the trick presented in this paper, using 2 correlated equations to eliminate one variable,

seems out of reach when one works with the y-coordinate. In this case, one would like

to eliminate the x-coordinate xP , but it seems to be very “hardcoded” into the addition

formula of the Weierstrass representation. We remark that one can still get some results

using the approaches described in the beginning of the section, but they ought to be very

weak results.

7.1.3 Extension Fields

The main results in the previous section address the prime-field elliptic curve hidden

number problem. In this section we address the case of elliptic curve points that lie in a

non-prime extension field.

Recall that the field Fq = Fpd is a d-dimensional vector space over Fp. We fix a

basis {b1, . . . ,bd} for Fq, and represent points x ∈ Fq with respect to that basis: for

x =
∑d

i=1 x
ibi we write x = (x1, . . . , xd). We consider E(Fq), the group of elliptic curve

points over Fq. As in previous sections we are interested in EC-HNP(DH) where the

oracle provides partial information on one component of one of the coordinates. For

example, one gets MSBk

(
(P + [t]R)ix

)
for some component 1 ≤ i ≤ d.

A natural and important question is whether the ability to recover one component –

that is, when k = log(p) in the example above – allows to recover the entire secret point.

This question is natural as extension fields provide additional algebraic structure that

can be exploited, and it is important since it potentially allows to prove stronger results

than in prime-field cases as one component represents only a fraction of 1/d of all bits.

The bit security of elliptic curve Diffie–Hellman keys over extension fields was studied

by Jao, Jetchev and Venkatesan [48]. They consider the following hidden number problem

for elliptic curves, which they call multiplier elliptic curve hidden number problem:4 Given

an oracle O that computes a single component of the x-coordinate of the map r → [r]P ,

that is O(r) = ([r]P)ix, recover the point P . They present a heuristic algorithm to this

problem, except for the case d = 2 where a complete proof is given (they also provide a

proof for the case of d = 3, but it is incomplete (see [77] and below)). This algorithm is

polynomial in log(p) but not in d, and therefore suits problems where one fixes the degree

d and let log(p) grow. That is, for extension fields Fpd of a constant degree.

In this section we generalise the method that was suggested in [48, Section 3.3]. We

then show that the approach taken for EC-HNP(DH) in prime fields in the previous

4This is in fact the exponent version of HNP that we introduced in Chapter 4.

92

chapter can also be used for the extension-field case to obviate the heuristics in the

previous work, and thus provide a complete bit security result for any elliptic curve over

any field of a constant extension degree. This solution applies to both the x and the y

coordinates of the elliptic curve Diffie–Hellman key.

The following section presents a general method to solve (non-linear) hidden number

problems over non-prime fields, where one component is given. It is followed by the

results of [48] and the new improved bit security result given here.

A General Method

The method presented in this section applies for both variants of the elliptic curve hidden

number problem, i.e. where the operation is elliptic curve addition or point multiplication.

To make this section more accessible, we first give a few concrete approaches to the

problem. Fix a point Q ∈ E, let P = (x,y) ∈ E be a variable, and let ψ ∈ {x, y}. The

following facts give rise to three approaches.

natural: Both point addition (P + Q)ψ and point multiplication ([r]P)ψ can be repre-

sented by rational functions in x,y; the former has small degree, and the degree of

the latter is polynomial in r.

JJV: Point multiplication ([r]P)x can be represented by a rational function only in x

using the elliptic curve division polynomials, where its degree is polynomial in r.5

our: The function (P + Q)x + (P − Q)x and the function (P + Q)y − (P − Q)y can be

represented by small-degree rational functions in x.

To unify these different approaches, we let an unknown P ∈ E and a known R ∈ E
be points and consider a family of functions ft : E → Fq. For each approach we have

natural: ft(P) = (P + [t]R)ψ or ft(P) = ([t]P)ψ .

JJV: ft(P) = ([t]P)x .

our: ft(P) = (P + [t]R)x + (P + [−t]R)x or ft(P) = (P + [t]R)y − (P + [−t]R)y .

We also consider an oracle O : [0,#E − 1] → Fp that outputs a single component of

ft(P), that is O(t) = OP (t) = f it (P). It is clear that in these three approaches given an

oracle for a component of the Diffie–Hellman key, one can form O.

5Also ([r]P)y can be represented by a rational function using the division polynomials, in variables
x,y.

93

Suppose we can represent f(P) = ft(P) as a rational function, that is

f(P) =
R1(x1

P , . . . , x
d
P , y

1
P , . . . , y

d
P)

R2(x1
P , . . . , x

d
P , y

1
P , . . . , y

d
P)
,

where R1, R2 are polynomials in Fq[z1, . . . , z2d]. Rewrite

R1(z1, . . . , z2d)

R2(z1, . . . , z2d)
=
R1

1b1 + . . .+Rd
1bd

R1
2b1 + . . .+Rd

2bd
,

where for 1 ≤ j ≤ d each polynomial Rj
1(z1, . . . , z2d), R

j
2(z1, . . . , z2d) has coefficients in

Fp. We “rationalise” the denominator (by multiplying the numerator and denominator

by a polynomial such that the denominator belongs to Fp[z1, . . . , z2d]) to express

R1(z1, . . . , z2d)

R2(z1, . . . , z2d)
= r1(z1, . . . , z2d)b1 + . . .+ rd(z1, . . . , z2d)bd ,

where rj are rational functions with coefficients in Fp. We assume to have access to

component i of ft(P), that is, we have

O(t) = f it (P) = rit(x
1
P , . . . , x

d
P , y

1
P , . . . , y

d
P) =

rit,1(x1
P , . . . , x

d
P , y

1
P , . . . , y

d
P)

rit,2(x1
P , . . . , x

d
P , y

1
P , . . . , y

d
P)
.

Multiplying by rit,2 and rearranging we get that the following polynomials

gt(z1, . . . , z2d) := rit,1(z1, . . . , z2d)− rit,2(z1, . . . , z2d)f
i
t (P)

are polynomials in Fp[z1, . . . , z2d], for which the point P = (x1
P , . . . , x

d
P , y

1
P , . . . , y

d
P) is a

simultaneous solution, and so if one can find the solutions to this system, then one can

recover P .

Notice that in the rationalisation step one multiplies the denominator by all of its

d− 1 conjugates (to admit the norm). Thus, if the denominator’s degree is l, one would

multiply in general by a polynomial of degree l(d− 1). Hence, each of the polynomials gt

is in general of degree at least d. Furthermore, we need at least 2d equations to solve a

system with 2d variables. Elimination techniques can then be used to reduce the number

of variables. This elimination process is polynomial in terms of the ground field, that

is in log(p), but not necessarily in the degrees. The current algorithms to solve systems

of 2d equations, all of degree at least d, do not run in time polynomial in d. Therefore,

this method is efficient if one fixes the extension degree d, as then the affect of d on the

elimination process running time is constant.

94

Previous Results

The JJV approach described above is the one taken by Jao, Jetchev and Venkatesan [48],

namely they use the elliptic curve division polynomials to represent point multiplication,

which allows them to represent the x-coordinate of the point multiplication mapping as

a function in x, and so the system has d variables (see [85, III, Ex.3.7] for more details).

Doing so imposes a very strong constraint: the multiplication by t map has degree t2 ([85,

III, Ex.3.7(e)]), and so writing down the explicit algebraic expressions for these mappings

can be done efficiently only for small values of t. As a consequence, it is not clear that by

considering only small multipliers t, the multiplier elliptic curve hidden number problem

has a unique solution, or a small set of solutions. For comparison, it is easy to show that

restricting to small multipliers in Fp-HNP yields exponentially many solutions.

As a result, they give a precise statement for degrees d = 2 [48, Propositions 3.1]

(using the point doubling formula and one component of the secret, one generates a non-

zero low-degree polynomial in the other component) and d = 3 [48, Propositions 3.2].

The latter case uses the resultant of two bivariate polynomials to get a single constant-

degree (univariate) polynomial. However, it is not shown that this resultant cannot be

the zero polynomial, and so it is not clear that one can efficiently solve the system. For

the general constant-degree case [48, Section 3.3], only a heuristic result is given.

New Results

As mentioned above, given a component of the x-coordinate, one can consider the second-

degree rational function given by (P +Q)x + (P −Q)x:

(P +Q)x + (P −Q)x = 2

(
xQx2

P + (a + x2
Q)xP + axQ + 2b

(xP − xQ)2

)
=
R1(x1

P , . . . , x
d
P)

R2(x1
P , . . . , x

d
P)
,

and by the aforementioned method one defines

gQ(x1, . . . , xd) := riQ,1(x1, . . . , xd)− riQ,2(x1, . . . , xd)
(

(P +Q)ix + (P −Q)ix

)
,

where riQ,1, r
i
Q,2, and so gQ, are polynomials of degree at most 2d.

Given a component of the y-coordinate, one can consider the third-degree rational

function given by (P +Q)y − (P −Q)y:

(P +Q)y − (P −Q)y = 2yQ

(
x3
P + 3xQx2

P + 3axP + axQ + 4b

(xP − xQ)3

)
,

95

where now one defines

gQ(x1, . . . , xd) := riQ,1(x1, . . . , xd)− riQ,2(x1, . . . , xd)
(
(P +Q)y − (P −Q)y

)
,

where riQ,1, r
i
Q,2, gQ, are polynomials of degree at most 3d.

Notice that in both cases gQ is a polynomial in x. The benefit of this approach is that

the polynomials gQ are of low degree for any Q, and thus the points Q are not restricted

to any (short) interval. Standard arguments, like root counting (as done for the prime-

field case in Section 7.1), can be used to show that for uniform and independent Q’s,

a sufficiently large system {gQ} is expected to have a unique (simultaneous) root. This

leads to the following results.

Proposition 7.7. Let E be an elliptic curve over an extension field Fpd. There exists an

algorithm, polynomial in log(p), that solves EC-HNP(DH) given an oracle that outputs a

complete component of either the x or y coordinates.

Corollary 7.8. For an elliptic curve defined over a constant-degree extension field, com-

puting a single component of the Diffie–Hellman key (for either the x or y coordinates)

is as hard as computing the entire key.

We remark that besides the bit security result, the approach presented here gives

the most efficient algorithm among the three aproaches presented above. Addressing

elimination problems, the polynomials’ degree, the number of variables in the system and

the number of solutions to the polynomial system play a main role in the complexity of

this task. In all of these aspects our approach is never worse than the other two. See [77,

Section 6.2.3] for a few examples.

7.2 Algebraic Torus Hidden Number Problem

In this section we study the algebraic torus hidden number problem. Recall that the

cyclotomic subgroup Gq,n of F∗qn is isomorphic to the algebraic torus Tn(Fq), and that if

Tn is rational then it has an explicit rational parameterization. The latter allows us to

compactly represent almost all elements of Gq,n in Aϕ(n)(Fq). Recall that a point g ∈ Tn is

regular if it can be represented in Aϕ(n) using the birational equivalence. In the algebraic

torus hidden number problem the group is the points on the torus Tn represented in

Aϕ(n), and the operation is given by the partial group law ? on Aϕ(n). One can consider

a Diffie–Hellman variant of this problem, however we solve a stronger variant where no

“Diffie–Hellman access” is given. We specifically consider the case where the oracle gives

some most significant bits (for elements of an extension field, the oracle gives the most

96

significant bits of one component in the ground field). We formulate the problem as

follows.

Tn-HNP: Fix a prime p, an integer n such that the torus Tn has an explicit

rational parameterization, an integer 1 ≤ i ≤ n, a regular point h ∈ Am(Fp),
where m := ϕ(n), and a positive number k. Let t1, . . . , td ∈ Am(Fp) be regular

points and let s ∈ Am(Fp) be an unknown regular point. Recover s given the

d pairs (ti,MSBk((s ? t)i).

There is no literature about this problem nor any known bit security results for the

T2,T6-cryptosystems. The main interest in the literature are for n = 2, 6, that is the

tori T2 and T6, and so we focus on them. For n = 2 we show that there exists a

polynomial-time solution to T2-HNP for k > 2
3

log(p). That is, if for some fixed ε > 0 one

takes k > (2
3

+ ε) log(p) for sufficiently large p. This result follows almost immediately

from the solution to MIHNP, once the equations are developed. For n = 6 we develop

the equations, and conclude that in the most general representation of the fields involved

these techniques does not lead to any significant results. One can show that for k = log(p),

i.e. a complete component is given, it is possible to solve Tn-HNP. The following case of

most interest is for n = 30, but as the results for T6 are very weak, it suggested that also

the results for T30 would be very weak, and so we do not explore this case.

7.2.1 Algebraic Torus T2

With notation as above we have n = 2 and so m = 1. Therefore, the compact represen-

tation is given in A1(Fp). Recall that we let Fp2 = Fp(θ), where θ2 + Aθ + B = 0, with

A,B ∈ Fp such that x2 +Ax+B is irreducible over Fp. Recall that for any two (regular)

points a, b ∈ A1, the partial group law on A1 is given by a ? b =
ab−B
a+ b− A

.

Consider T2-HNP, and write

MSBk(s ? t) ≡
st−B
s+ t− A

− e (mod p) ,

where e, as a function of x, is a random integral value satisfying |e| ≤ p
2k+1 .

We assume without loss of generality to have MSBk(s): concerned with the bit security

of the Tn-cryptosystem, without the abstraction of Tn-HNP, it is clear that one can use

the oracle to obtain partial knowledge about gab. Furthermore, one can define a new

secret s′ := s ? t1, and interpret the other samples as (s ? t1) ? (t−1
1 ? ti) = s′ ? t′.

Thus, we have

h0 := MSBk(s) ≡ s− e0 (mod p) .

97

Let h := MSBk(s ? t), and write

(h+ e)(s+ t− A) ≡ st−B (mod p) .

Therefore

(h+ e)(h0 + e0 + t− A) ≡ (h0 + e0)t−B (mod p) .

Hence, the function

F (X, Y) = XY + (h− t)X + (h0 + t− A)Y + [h(h0 + t− A)− h0t+B]

satisfies F (e0, e) ≡ 0 (mod p).

Repeating with different ti leads to polynomials of the form

Fi(X, Y) = XY +B1,iX +Bi,iY + Ai ,

that satisfy F (e0, e) ≡ 0 (mod p).

One would like to use the approach developed in the previous sections to prove that

it is possible to recover the roots with probability that depends on k. Luckily, such a

proof already exists for polynomials of the general form

Fi(X, Y) = CiXY +B1,iX +Bi,iY + Ai ,

for specific coefficient values, namely the modular inversion hidden number problem, with

k > 2
3

log(p), given that the multipliers ti are chosen uniformly at random in A1.

The proof follows the steps presented above. Specifically, the algorithmic part follows

exactly the same procedure as in [61, Theorem 1], with the change of coefficients

Ai ≡ hi(h0 + ti − A)− h0ti +B (mod p) ,

B1,i ≡ hi − ti (mod p) ,

Bi,i ≡ h0 + ti − A , (mod p)

Ci = 1 .

In the part of the success probability analysis one needs to construct a different family of

polynomials, which leads to some exceptional set for the secret values. Once this is done,

and this exceptional set is shown to be of small cardinality, the rest of the proof follows

the same arguments of [61, Theorem 1]. We now turn to close this gap.

From Eq. (12) in [61] we have

B1,id1 +Bi,idi + Cid1,i ≡ 0 (mod p) .

98

In other words,

(hi − ti)d1 + (h0 + ti − A)di + d1,i ≡ 0 (mod p) ,

or (
sti −B
s+ ti − A

− ei − ti
)
d1 + (s− e0 + ti − A)di + d1,i ≡ 0 (mod p) .

Multiplying by s+ti−A and rearranging, we get the following, as a quadratic polynomial

in ti,

Uit
2
i + Viti +Wi ≡ 0 (mod p) , (7.19)

where

Ui ≡ di − d1 (mod p) ,

Vi ≡ (A− ei)d1 + (2s− e0 − 2A)di + d1,i (mod p) , and

Wi ≡ (−B − ei(s− A))d1 + (s− A)(s− e0 − A)di + (s− A)d1,i (mod p) .

Similar to Claim 7.3 above, we want to analyse when the left hand side of (7.19) is

the constant zero, to derive some exceptional values for s. We see that if Ui ≡ 0 then

d1 ≡ di. Plugging to Vi ≡ 0 gives the relation d1,i ≡ (A+e0 +ei−2s)di. Finally, plugging

these relations to Wi ≡ 0 gives (s2 − As+B)d1,i ≡ 0 (mod p).

Notice that if s2 −As+B ≡ 0 then (−s)2 +A(−s) +B = s2 −As+B ≡ 0 (mod p),

which violates the fact that x2 +As+B is irreducible over Fp. Thus, we get that d1,i ≡ 0,

which implies d1 ≡ di ≡ d1,i ≡ 0 (mod p). As all of these values are smaller than p, we

get an equality (over the integers). This implies that there are no exceptional values for

s. The rest of the proof follows as in [61]: the probability the algorithm fails depends on

the probability that some ti satisfy (7.19), and vanishes asymptotically for k > 2 log(p)/3.

Hardcore Bits for T2 Diffie–Hellman

We see that one can solve T2-HNP in polynomial time for k > (2/3 + ε) log(p). As a

consequence, we get a hardcore function for the Diffie–Hellman problem on the algebraic

torus T2 and the following bit security result for T2 Diffie–Hellman key exchange.

Theorem 7.9. Fix 0 < δ ≤ ε < 1/2. Let p be an m-bit prime, a regular point g ∈ A1(Fp)
of “order”6 at least p/poly(log(p)) and k > (2/3 + ε)m. Given an efficient algorithm

to compute MSBk(g
ab) from ga and gb, there exists a polynomial-time algorithm that

computes gab with probability at least 1− pδ.

6See Remark 7.2 and footnote 2; the order can be thought of as the order of ψ(g) ∈ T2(Fp).

99

Using the Torus Representation

We briefly consider an alternative approach. Instead of working in A1, we use the mapping

ψ : A1 → T2 (and represent the image in Fp2)

ψ(s ? t) =
(s ? t)2 −B

(s ? t)2 − (s ? t)A+B
+

2(s ? t)− A
(s ? t)2 − (s ? t)A+B

θ .

Since we have an approximation of s ? t, namely h = s ? t− e, thus

ψ(s ? t) =
(h+ e)2 −B

(h+ e)2 − (h+ e)A+B
+

2(h+ e)− A
(h+ e)2 − (h+ e)A+B

θ . (7.20)

On the other hand, using h0 = s− e0, we have

ψ(s)ψ(t) = ψ(h0 + e0)ψ(t)

=

(
(h0 + e0)2 −B

(h0 + e0)2 − (h0 + e0)A+B
+

2(h0 + e0)− A
(h0 + e0)2 − (h0 + e0)A+B

θ

)
·(

t2 −B
t2 − tA+B

+
2t− A

t2 − tA+B
θ

)
.

(7.21)

Since ψ is a birational isomorphism ψ(s)ψ(t) = ψ(s ? t), so one can equate the right-

hand sides of (7.20) and (7.21). Computing the product on the right hand side of (7.21)

and clearing denominators will result with the relation

F (e0, e) = F1(e0, e) + F2(e0, e)θ = 0 ,

where F ∈ Fp2 [X, Y] (so the equality is in Fp2) and F1, F2 ∈ Fp[X, Y] are some polyno-

mials of the form

F1(X, Y) = aX2Y 2 + b1X
2Y + b2XY

2 + c1X
2 + c2XY + c3Y

2 + d1X + d2Y + f ,

F2(X, Y) = āX2Y 2 + b̄1X
2Y + b̄2XY

2 + c̄1X
2 + c̄2XY + c̄3Y

2 + d̄1X + d̄2Y + f̄ .

Applying the heuristic arguments above, for a single equation one expects to find a

root for |e0|, |e| ≤ p
2k+1 and k > 14

15
log(p). Now, since we have 2 equations, we apply the

analysis from above to conclude that a root could be found for k > 14−1
15

log(p) = 13
15

log(p).

Thus, taking this approach would not lead to a better result than the one above.

100

7.2.2 Algebraic Torus T6

With notation as above we have n = 6 and so m = 2. Therefore, the compact represen-

tation is given in A2(Fp). We represent Fp6 = Fp3(θ) for θ ∈ Fp2 , as we can therefore use

the result from T2(Fp3). Let {α1, α2, α3} be a basis for Fp3 .

In order to study T6-HNP we study the partial group law ? in A2. Recall that the

birational map ρ : T6 → A2 is given by ρ = pU ◦ ρ2, and its inverse ψ : A2 → T6 by

ψ = ψ2 ◦ p−1
U . Recall that for two (regular) points a = (a1, a2), b = (b1, b2) ∈ A2, the

partial group law in A2 can be computed by ρ
(
ψ(a)ψ(b)

)
or by

a ? b = pU
(
p−1
U (a) ?2 p

−1
U (b)

)
= pU

(
p−1
U (a)p−1

U (b)−B
p−1
U (a) + p−1

U (b)− A

)
.

We consider the latter. We have

p−1
U (a1, a2) = P +

g(a1, a2)

h(a1, a2)
(1, a1, a2)

=

(
g(a1, a2)

h(a1, a2)
+ xP ,

g(a1, a2)

h(a1, a2)
a1 + yP ,

g(a1, a2)

h(a1, a2)
a2 + zP

)
∈ A3

and the latter can be written as

γa :=

(
g(a1, a2)

h(a1, a2)
+ xP

)
α1 +

(
g(a1, a2)

h(a1, a2)
a1 + yP

)
α2 +

(
g(a1, a2)

h(a1, a2)
a2 + zP

)
α3 ∈ Fp3 .

Similarly, we can write p−1
U (b1, b2) as

γb :=

(
g(b1, b2)

h(b1, b2)
+ xP

)
α1 +

(
g(b1, b2)

h(b1, b2)
b1 + yP

)
α2 +

(
g(b1, b2)

h(b1, b2)
b2 + zP

)
α3 ∈ Fp3 .

Therefore

a ? b = pU (γa ?2 γb) = pU

(
γaγb −B
γa + γb − A

)
,

where the arguments are represented in A3(Fp). The next step is to compute γaγb ∈ Fp3 .

101

Let F = g
h
, then

γaγb =
(
(F (a) + xP)α1 + (F (a)a1 + yP)α2 + (F (a)a2 + zP)α3

)
·(

(F (b) + xP)α1 + (F (b)b1 + yP)α2 + (F (b)b2 + zP)α3

)
=
(
F (a)F (b) + (F (a) + F (b))xP + x2

P

)
α2

1

+
(
F (a)F (b)b1 + F (a)yP + F (b)b1xP + xPyP

)
α1α2

+
(
F (a)F (b)b2 + F (a)zP + F (b)b2xP + xP zP

)
α1α3

+
(
F (a)F (b)a1 + F (a)a1xP + F (b)yP + xPyP

)
α1α2

+
(
F (a)F (b)a1b1 + (F (a)a1 + F (b)b1)yP + y2

P

)
α2

2

+
(
F (a)F (b)a1b2 + F (a)a1zP + F (b)b2yP + yP zP

)
α2α3

+
(
F (a)F (b)a2 + F (a)a2xP + F (b)zP + xP zP

)
α1α3

+
(
F (a)F (b)a2b1 + F (a)a2yP + F (b)b1zP + yP zP

)
α2α3

+
(
F (a)F (b)a2b2 + (F (a)a2 + F (b)b2)zP + z2

P

)
α2

3

=
(
F (a)F (b) + (F (a) + F (b))xP + x2

P

)
α2

1

+
(
F (a)F (b)a1b1 + (F (a)a1 + F (b)b1)yP + y2

P

)
α2

2

+
(
F (a)F (b)a2b2 + (F (a)a2 + F (b)b2)zP + z2

P

)
α2

3

+
(
F (a)F (b)(a1 + b1) + F (a)(a1xP + yP) + F (b)(b1xP + yP) + 2xPyP

)
α1α2

+
(
F (a)F (b)(a1b2 + a2b1) + F (a)(a2yP + a1zP) + F (b)(b2yP + b1zP) + 2yP zP

)
α2α3

+
(
F (a)F (b)(a2 + b2) + F (a)(a2xP + zP) + F (b)(b2xP + zP) + 2xP zP

)
α1α3 .

We see that we need the multiplication table on {α1, α2, α3} to evaluate this as an element

of Fq3 with respect to the chosen basis. Notice that also if we further take the product of

ψ2(γa) and ψ2(γb) in Fp6 , it will be defined in terms of the arithmetic in Fp6 . This obstacle

for deriving a uniform formula for the partial group law is already noted in [42, 73].

Suppose now that we have evaluated γaγb under the concrete basis {α1, α2, α3}. Con-

sider again

γa ?2 γb =
γaγb −B
γa + γb − A

.

Recall that g and h are linear and quadratic polynomials (in (x1, x2)), respectively. There-

fore, γa is rational in a1, a2 of degree 2 and γb is rational in b1, b2 of degree 2. Therefore

the numerator of the right-hand side is rational in a1, a2, b1, b2 of degree 4, and the de-

nominator is rational of degree 2. Hence we can represent γa ?2 γb (as element of Fp3) by

A1α1 +A2α2 +A3α3 where Ai are rational in a1, a2, b1, b2 of degree (at most) 4. Finally,

102

to go back to A2(Fp) we apply pU on γa ?2 γb and get

a ? b = pU(γa ?2 γb) = pU(A1, A2, A3) =

(
A2 − yP
A1 − xP

,
A3 − zP
A1 − xP

)
.

We now consider T6-HNP. Given t ∈ A2(Fp) and bits of component j of s ? t, then

s ? t = pU(γs ?2 γt) = pU(A1, A2, A3) =

(
A2 − yP
A1 − xP

,
A3 − zP
A1 − xP

)
,

where Ai are rational in s1, s2 of degree 2.

Suppose that j = 1, that is we get some most significant bits of the first component

of s ? t. We have

h = MSBk((s ? t)1) =
A2 − yP
A1 − xP

− e ,

so

(h+ e)(A1 − xP) = A2 − yP ,

Where A1, A2 are rational functions of degree 2 in s1, s2. As before, we assume to have

h0 = MSBk(s1) = s1 − e0, so we can substitute s1 = h0 + e0. Multiplying by all the

involved denominators we end with a bivariate polynomial of degree 4, for which (e, s2) is

a root. Since s2 is an unbounded unknown, we need to eliminate this unknown in all its

degrees. This is expected to lead to a very large polynomial, which will result in a very

weak bit security result, using the solution for MIHNP we presented above. The same

analysis holds for the second component j = 2.

Complete Component Notice that if we get a complete component of s ? t, that is,

h =
A2 − yP
A1 − xP

,

and so

h(A1 − xP) = A2 − yP .

Again, multiplying by all the denominators we have a degree 4 polynomial in s1, s2, t1, t2,

for which (s1, s2, t1, t2) is a root. We assume to know s1, t1, t2 so we end with 4 possibilities

for s2, if this polynomial is non-zero. We can therefore have a list of at most 4 candidates

for the other component.

103

Chapter 8

Isogeny Hidden Number Problem

This chapter is dedicated to the study of the bit security of shared keys arising from the

supersingular isogeny Diffie–Hellman key exchange. To study this matter, we introduce

the isogeny hidden number problem as a useful abstraction that allows to focus on the

main reduction. The problem is formulated as follows.

Isogeny-HNP: Fix a prime p, let f be a function over Fp2 , let Es(Fp2) be an

unknown supersingular elliptic curve and let O be an oracle that on input

r computes f on the j-invariant of an r-isogenous curve to Es. That is,

O(r) = f(j(E ′)) for some curve E ′ which is r-isogenous to Es. Recover j(Es)

given query access to the oracle O.

Let us explain how the oracle O in this problem can be formed in the context of

supersingular isogeny Diffie–Hellman key exchange. Recall that the public parameters

are PA, QA, PB, QB ∈ E, while Alice’s public keys are EA, φA(QB), φA(PB), and Bob’s

public keys are EB, φB(PA), φB(QA). The main question in bit security is what kind of

information one can derive from these values, so suppose we have an oracle O′ that takes

these values and produces some partial information on j(EAB). Denote Es := EAB as

the unknown elliptic curve in Isogeny-HNP. Getting the partial information from O′ on

j(Es) = j(EAB) is interpreted as the oracle query O(1).

A possible way to interact with the oracle is the following. Choose a small integer

r (coprime to Alice’s prime `A if working on EB) and a point R ∈ EB[r] of full order.

Let φBC : EB → EC be an isogeny of degree r with kernel 〈R〉, that is EC = EB/〈R〉.
Note that there is a curve E ′ := EAC and an r-isogeny EAB → EAC corresponding to the

image of R under the isogeny from EB to EAB. We also have that EAC = EC/φC(GA)

where GA is the kernel of φA and φC = φBC ◦ φB. This situation is pictured below.

104

E

EA

EB

EAB

φA

φB
EAC

ECφBC

The curves EA, EC and the corresponding auxiliary points φA(PB), φA(QB), φC(PA) =

φBC(φB(PA)), φC(QA) = φBC(φB(QA)) can be used to perform a key exchange, which

will constitute the curve EAC (this is the dotted arrow in the figure). Querying the oracle

O′ on these values results in some partial information on j(EAC). We interpret this as

the oracle query O(r).

Recall that in this scheme the elliptic curves are defined over Fp2 , and so their j-

invariants are elements in Fp2 . We represent Fp2 as a (2-dimensional) vector space over

Fp. We solve Isogeny-HNP where the partial information is a single component in Fp
of the shared j-invariant. That is, when the oracle gives one component of j(EAB). No

other results are known for this problem, or on the bit security of supersingular isogeny

Diffie–Hellman key exchange.

We first remark that since there are only around p/12 supersingular j-invariants,

one might expect that knowledge of one component uniquely determines the entire j-

invariant. This is not true in general, and it seems to be the case that there is no bound

independent of p on the number of supersingular j-invariants in Fp2 with a fixed value

for ji (one exception is the rare class of j-invariants that actually lie in Fp and so are

uniquely determined by their first component; the number of such j-invariants grows

proportional to
√
p). Furthermore, there seems to be no known efficient algorithm that

given one component of a j-invariant of a supersingular elliptic curve, computes the other

component. Hence, this result is not trivial.

8.1 Exposition

Recall that we let Fp2 = Fp(θ), where θ2 + Aθ + B = 0, with A,B ∈ Fp such that

x2 + Ax + B is irreducible over Fp. The main idea is to use the modular polynomials

Φr(x, y) as an algebraic tool to relate different answers by the oracle, i.e. the given

knowledge on different j-invariants. Recall that the modular polynomial Φr(x, y) has the

following property: there exists an isogeny φ : E → E ′ of degree r with cyclic kernel if

and only if Φr(j(E), j(E ′)) = 0.

The framework is the following. For any z ∈ Fp2 we write z = z1 + z2θ. We call z1 a

105

“coefficient of 1” and z2 a “coefficient of θ”. Then

Φ2(x, y) = F1(x1, x2, y1, y2) + F2(x1, x2, y1, y2)θ

for F1, F2 ∈ Fp[x1, x2, y1, y2]. Let E,E ′ be elliptic curves with j-invariants j = j(E) and

j′ = j(E ′). Suppose that there exists an isogeny φ : E → E ′ of degree r with cyclic

kernel, then

Φ2(j, j′) = F1(j1, j2, j
′
1, j
′
2) + F2(j1, j2, j

′
1, j
′
2)θ = 0 ,

and so F1(j1, j2, j
′
1, j
′
2) ≡ F2(j1, j2, j

′
1, j
′
2) ≡ 0 (mod p). One can now take a Weil descent

approach with the known information about the values j1, j2, j
′
1, j
′
2. Specifically, if two

of these values are completely known, then one gets two bivariate polynomials. Taking

their resultant yields a univariate polynomial, where one can range over its roots, and

compute the other unknown.

It is clear from this method that F1, F2 need to be of small degree. The smallest

degree of Φr(x, y) is for r = 2, for which

Φ2(x, y) = x3 + y3 − x2y2 + 1488x2y + 1488xy2 − 162000x2 − 162000y2 + 40773375xy

+ 8748000000x+ 8748000000y − 157464000000000 .

In this case the polynomials F1, F2 are then given by

F1(x1, x2, y1, y2) = x3
1 + y3

1 + ABx3
2 + ABy3

2 − x2
1y

2
1 − (B2 − A2B)x2

2y
2
2 +Bx2

1y
2
2 +Bx2

2y
2
1

+ 1488x2
1y1 + 1488x1y

2
1 − 1488Bx2

2y1 − 1488x1y
2
2 + 1488ABx2

2y2

+ 1488ABx2y
2
2 + 2Ax2

2y1y2 + 2Ax1x2y
2
2 − 162000x2

1 − 162000y2
1

− 162000Bx2
2 + 162000By2

2 − 3Bx1x
2
2 − 3By1y

2
2 − 4x1x2y1y2

− 2976Bx1x2y2 − 2976Bx2y1y2 + 40773375x1y1 − 40773375Bx2y2

+ 8748000000x1 + 8748000000y1 − 157464000000000 .

F2(x1, x2, y1, y2) = (A2 −B)x3
2 + (A2 −B)y3

2 + Ax2
1y

2
2 + Ax2

2y
2
1 + 3x2

1x2 + 3y2
1y2

− (2AB − A3)x2
2y

2
2 + 1488x2

1y2 + 1488x2y
2
1 − 3Ax1x

2
2 − 3Ay1y

2
2 − Ax2

2y1

− 1488Ax1y
2
2 + 1488(A2 −B)x2

2y2 + 1488(A2 −B)x2y
2
2 − (2A2 − 2B)x2

2y1y2

− 2(A2 − 2B)x1x2y
2
2 − Ax2

2 − Ay2
2 + 4Ax1x2y1y2 + 2976x1x2y1

− 2976Ax1x2y2 − 2x2
1y1y2 − 2x1x2y

2
1 + 2976(1− A)x1y1y2 − 324000x1x2

− 324000y1y2 + 40773375x1y2 + 40773375x2y1 − 40773375Ax2y2

+ 8748000000x2 + 8748000000y2 .

106

Lemma 8.1. Fix k, l ∈ {1, 2} and consider the variables x3−k, y3−l as parameters for Φ2.

For i ∈ {1, 2} define Gi(xk, yl) := Fi(x1, x2, y1, y2), then for any x3−k, y3−l the resultant

Res(G1, G2, yl) is not identically zero.

Proof. We use the fact that the modular polynomial Φr(X, Y) ∈ Fp[X, Y] is absolutely

irreducible (irreducible over the algebraic closure). We therefore consider Φr, as well as

G1, G2, in Fp[X, Y]. Recall that there are four cases depending on the values of (k, l).

For example when (k, l) = (1, 2) we have G1(x1, y2) +G2(x1, y2)θ = Φ2(x1 + j2θ, j
′
1 +y2θ).

Assume for contradiction that Res(G1, G2, yl) ≡ 0. From Lemma 2.3, the resultant

Res(G1, G2, yl) ≡ 0 if and only if there exists a polynomial h ∈ Fp[xk, yl] with positive

degree in yl such that h | G1 and h | G2.

Consider the following linear substitution of variables:

� If k = 1 then set x1 = X − j2θ and if k = 2 then set x2 = (X − j1)θ−1.

� If l = 1 then set y1 = Y − j′2θ and if l = 2 then set y2 = (Y − j′1)θ−1.

These substitutions give

G1(xk, yl) +G2(xk, yl)θ = Φr(X, Y) .

Hence, letting h̄(X, Y) be the polynomial obtained by evaluating h(xk, yl) with these

substitutions we have

h̄(X, Y) | Φr(X, Y) .

From the facts that the degree of h̄ is equal to the degree of h, and that Φr is irreducible,

it follows (since h is non-constant) that h is a scalar multiple of both G1 and G2. However,

by comparing the monomials in G1, G2, it follows that they are not constant multiples of

each other. Indeed, if z2 is known, for z ∈ {x, y}, then degz1 G1 = 3 while degz1 G2 = 2;

the other case involves analysing the system arising from the coefficients of F1, F2. Hence

we have a contradiction and so the resultant is non-zero.

8.2 Main Results

Theorem 8.2. Consider Isogeny-HNP where the oracle O outputs one component of

j(E ′) ∈ Fp2 in its representation over Fp. Then there is an algorithm that makes two

queries to O and outputs a list that contains the “hidden” j-invariant j(Es). The size of

the list is bounded by 18 if both components are coefficients of 1, by 12 if both components

are coefficients of θ and by 15 otherwise.

107

Proof. Let Es be the unknown elliptic curve in Isogeny-HNP. The query O(1) gives one

component of j(Es) and the query O(2) gives one component of j(E ′), where E ′ is 2-

isogenous to Es. From Lemma 2.2, we get Φ2

(
j(Es), j(E

′)
)

= 0. Let j = j(Es) = j1+j2θ,

j′ = j(E ′) = j′1 + j′2θ and Φ2 = F1 + F2θ for two polynomials F1, F2 ∈ Fp[x1, x2, y1, y2].

We have

Φ2(j, j′) = F1(j1, j2, j
′
1, j
′
2) + F2(j1, j2, j

′
1, j
′
2)θ = 0 ,

and so F1(j1, j2, j
′
1, j
′
2) ≡ F2(j1, j2, j

′
1, j
′
2) ≡ 0 (mod p).

The oracle answers provide the values x3−k = j3−k and y3−l = j′3−l for k, l ∈ {1, 2}.
Plugging these values into the polynomials Fi, we construct two bivariate polynomials Gi

in variables xk, yl where the highest degree of each variable is at most 3. By taking the

resultant of these polynomials with respect to yl we get a univariate polynomial in xk of

degree at most 18. The resultant is not the constant zero as shown in Lemma 8.1. One

can then factor this polynomial to get at most 18 roots over Fp. One of the roots is jk.

As we have jk and j3−k, we can construct j(Es). Hence, ranging over all of these roots

one can produce a list of at most 18 items, one of which is the unknown j-invariant of

Es.

Finally, notice that degx1 F1 = degy1 F1 = 3, degx2 F1 = degy2 F1 ≤ 3, degx1 F2 =

degy1 F2 ≤ 2 and degx2 F2 = degy2 F2 ≤ 3. Computing the resultant’s degree in all cases

gives

degxk Res(G1, G2, yl) ≤

12 if k = l = 1,

18 if k = l = 2,

15 otherwise .

8.2.1 Hardcore Bits for Supersingular Isogeny Diffie–Hellman

Theorem 8.2, along with the explanation of the source of Isogeny-HNP, gives the following

bit security result for supersingular isogeny Diffie–Hellman key exchange.

Theorem 8.3. Consider supersingular isogeny Diffie–Hellman key exchange. Given

an efficient algorithm that computes any component of j(EAB) from EA, EB, φA(PB),

φA(QB), φB(PA), φB(QA), there exists a deterministic polynomial-time algorithm that

computes j(EAB).

Unreliable Oracles

Theorem 8.2, and so also Theorem 8.3, assumes the oracle always gives the correct answer,

i.e. a component of j(E ′). We show how to achieve a similar result for an unreliable oracle.

108

When the oracle’s probability in producing the correct result is non-negligible, then the

list of candidates for the shared key is polynomial in log(p).

The main idea is to consider the isogeny graph around the curve Es. We restrict only to

the 2-isogeny graph, though one can consider other degrees, separately or simultaneously.

Observe that in order to recover the j-invariant of any curve in the graph, using the

method above, one needs to obtain a single component of the j-invariant of two curves of

distance one (2-isogenous curves). This is the equivalent to the oracle queries O(1),O(2)

above.

We explain how to travel along the graph to recover one j-invariant, then travel back

to recover j(Es). Using the oracle’s success probability and a birthday paradox approach,

one computes how many oracle queries are needed in order to have with a given probability

the correct components of the j-invariant of two neighbouring curves (of distance one).

We do not assume to know where in the graph this holds.

Start at Es to get one component of j(Es), potentially wrong. Then query the oracle

on each of its three neighbours (recall that there are three distinct 2-isogenies over Fp2)
For each of them, query on the two untraveled neighbours, and so on. It is important

to exhaust all curves of distance d from Es before travelling to curves of distance d + 1.

Then, after T queries the maximal distance from Es is O(log(T)).

Fix some desired success probability to recover j(Es). Suppose one needs T ′ queries to

have with this probability the correct component of the j-invariants of two neighbouring

curves. There are (at most) T ′−1 neighbours on this path on the graph. Taking the oracle

answers on each of them and applying the technique above results in at most 18(T ′ − 1)

possibilities for the j-invariants of all the curves in the travelled path on the graph. We

suppose one of them is the correct j-invariant of some curve. We do not assume to know

which one it is.

We now use the modular polynomials to travel back to Es. For each curve Ea of

distance d+ 1 (to Es) in this path, denote by Eb the neighbouring curve of distance d (in

the unlikely event of more than one Eb, choose one of them). Take a candidate j(Ea) and

solve Φ2

(
j(Ea), y

)
= 0. We get at most 3 candidates y for j(Eb). Proceed recursively

until reaching to distance zero, i.e. to Es. Since the maximal distance to Es on the path

is log(T ′), each Ea gives rise to at most 3log(T ′) candidates for j(Es), so overall we have

18(T ′ − 1)3log(T ′) candidates for j(Es) (one can get a better bound as there are at most

T ′/2 curves of distance log(T ′), at most T ′/4 curves of distance log(T ′) − 1 and so on).

Finally, if the oracle’s success probability is non-negligible, then T ′ is bounded by some

polynomial in log(p) and so the list of candidates for Es is polynomial in log(p)

Remark 8.4. Some approaches can be taken to reduce the size of the final list. For

example, querying the oracle on more curves may result in expected ` different correct j-

109

invariants in the graph. Then j(Es) will appear in ` different lists. One can also consider

paths on other r-isogenous curves to keep a small distance from Es.

Other Partial Information Combining the Weil descent approach with the ability to

travel on the isogeny graph can lead to bit security results when other types of partial

information is given. However, this in general leads to very weak results. A more precise

description can be found in [35, Section 5.1.2], where the partial information is most

significant bits of the two components of j(Es).

Ordinary Elliptic Curves The results presented here for supersingular isogeny Diffie–

Hellman also hold for the scheme on ordinary elliptic curves [72, 89], with the necessary

changes.

110

Chapter 9

Bit Security of CDH Under DDH

This chapter studies the hardness of computing single bits of Diffie–Hellman keys under

the decisional Diffie–Hellman assumption. Under this stronger assumption we prove

the bit security of individual outer bits of Diffie–Hellman keys, and of any block of

4 consecutive inner bits. The result extends for (most significant) bit fractions, using

the approximations function APPR, and holds for any oracle that predicts this partial

information with any non-negligible advantage over a guess.

9.1 Exposition

We rephrase DDH in the following way: For an element g ∈ G of order T , the deci-

sional Diffie–Hellman problem is to distinguish between the distributions (ga, gb, gab) and

(ga, gb, gc) where a, b, c are chosen independently and uniformly at random in the interval

[0, T − 1]. The decisional Diffie–Hellman assumption states that no such efficient distin-

guisher exists. This assumption is of great value to contemporary cryptography. We refer

to [14] for a very good survey on DDH and its applications.

A folklore theorem is that computing partial information about the Diffie–Hellman

key would solve DDH. Let us state the argument. Suppose one can compute partial

information about gab. Given a DDH triple (ga, gb, gc), where either c ≡ ab (mod T) or

c is uniformly chosen, one can take ga, gb, compute this partial information about gab

and compare it to the same value of gc; if the values are not the same then gc 6= gab.

For example, suppose there exists an algorithm A that computes MSBk(g
ab). Invoke

A on g, ga, gb and test A(g, ga, gb)
?
= MSBk(g

c). If c ≡ ab (mod T) then the equality

always holds, however if c 6≡ ab (mod T) then roughly speaking this equality holds 1/2k

of the time. This informal argument shows that computing the k most significant bits of

Diffie–Hellman keys gives an advantage in solving DDH.

Surprisingly, amplifying the probability to achieve an algorithm that succeeds with

111

overwhelming probability could not have been achieved for single bits. A rigorous study

of this problem was initiated by Blake and Garefalakis [7], where they gave a result for

the 2 most significant modular bits (which can be as large as k = 3 in the example above),

for G = F∗p and T ≥ p1/3+ε. Together with Shparlinski [8] they improved this result for

T ≥ pε, showed that one can also consider fractions of 2 bits, and gave a similar result

for G = E(Fp).
The earlier work also speculates if a one-bit result is achievable, where they suggest

to the negative, mentioning the Legendre symbol of gab ∈ Z∗p, which is easily computable.

As |Z∗p| = p−1 and gp−1 = 1 for every g ∈ Z∗p, the arithmetic in the exponent takes place

mod p − 1, which is an even number. Therefore, if either a or b are even integers, then

ab mod p − 1 is also even. Given ga, and assuming g is a generator, testing the parity

of a is easily done by raising ga to the power (p − 1)/2 (as shown in Chapter 4); if the

result is −1 then ga is a generator and a is odd, otherwise a is even.

This example also shows one of the difficulties in constructing an algorithm to solve

DDH. To start with g is not taken to be a generator (as then we can apply the Legendre

symbol test), and so the multipliers – as we show later – are not uniformly distributed in

Z∗p. This fact makes this problem less trivial than it may seem at first sight.

9.2 Representing Bits by Approximations

As this section is concerned with single bits, we emphasise that the difference between

classical bits and modular bits or the more relaxed approximations should not be over-

looked. As already mentioned, in some cases the more relaxed definitions for k bits,

actually implies k + 1 classical bits. Specifically, in some cases the previous results hold

given 3 most significant (classical) bits. Therefore, when working with small amount of

bits, like 1 or 2, it is more desirable to consider the classical bits definition, when possible.

Nevertheless, we remark that it is not necessary to restrict to classical bits. The

Legendre symbol gives a good example of other partial information that one can derive.

Therefore, while it is very natural to consider classical bits, other types of partial infor-

mation, like the ones above, may also be of interest. In particular, we show that these

types of bits are useful in the study of (classical) inner bits. However, as we now explain,

one should be very careful about the results he derives when working with other types of

bits. We give two examples.

Example 9.1. Consider Zp and denote x = dp/4e and y = p − 1. Then MSB1(x) = 0

and MSB1(y) = 1. Notice that for u := bp/8e we have u = APPR1(x), and u is thought

to share the same most significant bit as x. We also have u = APPR1(y), where u is

thought to share the same most significant bit as y. A careless conclusion is that also x

112

and y share the most significant bit. This example shows that while the classical definition

is transitive, the approximations are not.

This issue, that any two values in Z∗p can give the same APPR1, is essentially what

prevented the previous works from achieving a single-bit result. We will show how to

overcome it. A more serious caution should be taken for arguments as in the following

example.

Example 9.2. Let g be a generator of Z∗p and consider an oracle O that outputs APPR1

of Diffie–Hellman keys. That is O(ga, gb) = APPR1(gab). Writing APPR1(x) = x−e, the

value e is assumed to be chosen independently and uniformly at random from [−p/4, p/4].

Making the oracle query O(ga, gb) gives APPR1(gab) = gab − e. Noticing that −gb =

gb+(p−1)/2, the oracle query O(ga,−gb) gives APPR1(gabga(p−1)/2) = APPR1(−gab) =

−gab − e′ if a is odd. We then have V := APPR1(gab) + APPR1(−gab) = e + e′ where

|e|, |e′| ≤ p/4. If |V | = |e+ e′| ≤ p/4 then we cannot derive a better bound on the size of

e and e′. On the other hand, if |V | = |e + e′| > p/4 then e, e′ are both either positive or

negative (which is reflected by the sign of V).

This shows that we can combine the two queries to get more bits of gab, indeed suppose

V > 0 then 0 ≤ e ≤ p/4 and APPR1(gab)− p/8 = gab − (e− p/8) and −p/8 ≤ e− p/8 ≤
p/8, so APPR1(gab) − p/8 = APPR2(gab); also APPR1(−gab) − p/8 = APPR2(−gab).

Since e, e′ are chosen independently and uniformly at random the probability for |V | =

|e + e′| > p/4 is high. Moreover, following the same arguments we can also have that

|V | = |e+ e′| ≥ p/O(log(p)) with non-negligible probability. This will allow us to combine

only 2 samples, both for a single most significant bit related to gab and receive O(log log(p))

most significant bits about gab.

Notice that if we work with MSMB instead then we always get that MSMBk(g
ab) +

MSMBk(−gab) = 2k − 1, so no further information can be learnt on gab from the extra

query. With MSB very little information can be learnt from this extra query, and for the

specific case of a Mersenne prime p = 2n−1, we always get that εi(x) = 1−εi(−x) where

εi is the i-th bit of x.

9.3 Distribution of gx

Let g ∈ Fp of multiplicative order T . The distribution of gx in Fp is well studied. Of

special interest is the following. Given an element λ ∈ F∗p and positive integers r, h

denote by Nλ(r, h) the number of solutions x to the congruence λgx ≡ v (mod p) where

0 ≤ x ≤ T − 1 and r + 1 ≤ v ≤ r + h. Exponential sums are a useful tool in the

understanding of the distribution of gx where x ranges in some interval. Theorem 3.4 of

113

[53] implies

max
gcd(λ,p)=1

∣∣∣∣∣∣
T−1∑
x=0

exp(2πiλgx/p)

∣∣∣∣∣∣�

p1/2 if T ≥ p2/3;

p1/4T 3/8 if p1/2 ≤ T ≤ p2/3;

p1/8T 5/8 if p1/3 ≤ T ≤ p1/2.

Informally speaking, exponential sums give us measure of the linear structure. If the

values gx were biased, that is they lie in one interval much more than expected, then the

exponential sums would be much greater. This is also true if they form an arithmetic

progression of difference d, as we can choose λ = d−1.

This result allows to show that the number Nλ(r, h) is close to its expected value Th
p

.

That is, among all T values λgx, we expect that Th/p of them will lie in any interval of

size h. We have the following result (see [41, Lemma 2.1]).

Lemma 9.3. For any ε > 0 and any g ∈ Fp of multiplicative order T ≥ p1/3+ε the bound

max
0≤r,h≤p−1

max
gcd(λ,p)=1

∣∣∣∣Nλ(r, h)− Th

p

∣∣∣∣ = O(T 1−δ)

holds, where δ ∈

[1/4, 1/2] if T ≥ p2/3;

[1/8, 1/4] if p1/2 ≤ T ≤ p2/3;

[9ε/(8 + 24ε), 1/8] if p1/3 ≤ T ≤ p1/2.

We will also use the following stronger bound, which immediately follows from [20]

(see [8, Lemma 1] and reference within).

Lemma 9.4. For any ε > 0 there exists δ > 0 such that for any element g ∈ Fp of

multiplicative order T ≥ pε the bound

max
0≤r,h≤p−1

max
gcd(λ,p)=1

∣∣∣∣Nλ(r, h)− Th

p

∣∣∣∣ = O(T 1−δ)

holds.

9.4 Main Results

We give the following results. Theorems 9.5 shows that computing the most significant

classical bit of the Diffie–Hellman key leads to an algorithm that solves the decisional

Diffie–Hellman problem. For this result to hold (in polynomial time) one needs p =

2n + r for r ≥ p/poly(log(p)), so that the information given by this bit is meaningful,

114

as explained in Chapter 4. Theorem 9.6 gives a similar result for fractions of the most

significant bit. In Section 9.4.3 we consider other bits of the Diffie–Hellman key, where

Theorem 9.8 gives a similar result for the least significant bit and for small windows of

any consecutive bits. Lastly, Proposition 9.7 shows that all of these results hold even if

one only has some advantage in predicting the bits.

All the operations in this section are in Z∗p unless otherwise stated. Our results use

the following procedure, called DDH-Test, which on a triple (ga, gb, gc) and an oracle

O(ga, gb) = F (gab) for some function F proceeds as follows.

Procedure DDH-Test
1: Choose r ∈ [0, T − 1] uniformly and independently at random.

2: Compute ga+r = gagr and gbr = (gb)r.

3: Query O(ga+r, gb) to get F (gabgbr).

4: if O(ga+r, gb) = F (gcgbr) then
return 1

else
return 0

If c ≡ ab (mod T) it is always the case that O(ga+r, gb) = F (gcgbr). Therefore we will

have to analyze the probability that the equality O(ga+r, gb) = F (gcgbr) does not hold on

random choices of gbr when c 6≡ ab (mod T). Notice that when g is a generator F∗p then

it is immediate that gbr distributes uniformly in F∗p. However, we already showed that in

this case one can compute the Legendre symbol of gab and so the DDH assumption does

not hold. For our results below we are mostly interested in the case where T is prime.

9.4.1 The Most Significant Bit

Theorem 9.5. Let ε > 0, let p = 2n + η, for 0 < η < 2n, be a prime and let g ∈ Z∗p be

an element of prime order T ≥ pε. Suppose O is an oracle which takes ga, gb ∈ Z∗p and

outputs MSB1(gab). Then there exists a probabilistic polynomial-time algorithm that takes

ga, gb, gc ∈ Z∗p, makes d calls to O, and decides if c ≡ ab (mod T) with error probability(
1 + o(1)

) (
1− η+1

2n+η

)d
.

Proof. First notice that
∣∣{x ∈ Z∗p | MSB1(x) = 0}

∣∣ = 2n − 1 and
∣∣{x ∈ Z∗p | MSB1(x) =

1}
∣∣ = η. Calling DDH-Test, if c ≡ ab (mod T) we always haveO(ga+r, gb) = MSB1(gcgbr),

then we always receive 1.

On the other hand, if c 6≡ ab (mod T) we show that the equality O(ga+r, gb) =

MSB1(gcgbr) holds with probability at most 2n−1
p

+O(1/T δ) for some δ that only depends

on ε. Write s = gab, w = gc and t = gbr, we have u := s−w 6= 0. We want to know for how

many different t ∈ 〈g〉 it holds that st and wt = st − ut have the same most significant

115

bit. Let Vt := {v ∈ Z∗p | MSB1(st) = MSB1(st−v)}. It is clear that Vt is an interval in Z∗p
of size at most 2n − 1. We can rephrase the problem as determining the probability for

ut ∈ Vt. It is clear that if t was to be distributed uniformly in Z∗p, then also ut, and the

claim would have hold. For g as in the claim, since |〈g〉| = T is prime, also gb has order

T so t distributes uniformly in 〈g〉. From Lemma 9.4 we know that ut distributes in Z∗p
as expected. That is, the number of values for which ut ∈ Vt is at most T |Vt|

p
+ O(T 1−δ)

for some δ > 0, and therefore the probability that O(ga+r, gb) = MSB1(gcgbr) is at most
2n−1
p

+O(1/T δ).

We call DDH-Test (at most) d times, and the algorithm decides that c ≡ ab (mod T)

if and only if DDH-Test returns 1 for every query. The algorithm fails with probability

at most

(
2n − 1

p

)d1 +O

((
p

(2n − 1)T δ

)d) <

(
1− η + 1

2n + η

)d(
1 +O

(
1/pεδd

))
,

since
2n − 1

2n + η
=

2n + η

2n + η
− η + 1

2n + η
= 1− η + 1

2n + η
.

As we explain above modular bits and approximations allow us to consider more types

of partial knowledge which give less information than a single bit. To get a more general

result we work with the approximation APPR, but an analogous result can be stated for

the modular bits MSMB as well.

Theorem 9.6. Let ε > 0, let 0 ≤ i < n and let g ∈ Z∗p be an element of prime order

T ≥ pε. Suppose O is an oracle which takes ga, gb ∈ Z∗p and outputs APPRk(g
ab) for k >

0. Then there exists a probabilistic polynomial-time algorithm that takes ga, gb, gc ∈ Z∗p,
makes d calls to O, and decides if c ≡ ab (mod T) with error probability (1 + o(1))/2d/k.

Proof. The proof is similar to the proof of Theorem 9.5, where we repeat the algorithmic

process and use the same notation as there. It is clear that if c ≡ ab (mod T) then we

always have
∣∣O(ga+r, gb)− gcgbr

∣∣ ≤ p/2k+1. In other words O(ga+r, gb) = APPRk(g
cgbr).

Suppose c 6≡ ab (mod T), and let Vt := {wt + e | |e| ≤ p
2k+1}. We want to analyze

the probability that O(ga+r, gb) = APPRk(st) lies in Vt. Notice that for k ≤ 1 for any

x ∈ Z∗p there exists v ∈ Vt such that v = APPRk(x). A key observation is that once g is

fixed the oracle O only receives ga+r and gb. Therefore, even if the oracle is adversarial,

it does not know gc and therefore not the center point wt of Vt or the distance between

st to Vt. Since APPRk(st) is a function of st it is sufficient to show that st distributes

116

(almost) uniformly among all intervals of size |Vt|, as already mentioned that with respect

to O(ga+r, gb) the set Vt is independent.

Applying Lemma 9.4, the number of values for which st lies in any interval of size

|Vt| is at most T |Vt|
p

+ O(T 1−δ) = T (1+p/2k)
p

+ O(T 1−δ) for some δ > 0, and therefore the

probability that O(ga+r, gb) = APPRk(g
cgbr) is at most 1

2k
+O(p−1 + p−εδ). Repeating d

times gives the desired result.

9.4.2 Predicting the Bits

Suppose the oracle O is unreliable. That is, it does not always give the correct output

F (gab). We show that as long as it has a non-negligible advantage over the guessing

strategy in predicting F (gab), our results still hold. Here, the guessing strategy is taken

with respect to expected value of solutions Nλ(r, h).

Proposition 9.7. In the previous theorems, suppose the oracle O has non-negligible

advantage over 1
2k

+ O(T−δ) in predicting F (gab). Then, there exists a probabilistic

polynomial-time algorithm that takes ga, gb, gc ∈ Z∗p, and decides if c ≡ ab (mod T) with

overwhelming probability.

Proof sketch. The rule of determining whether c ≡ ab (mod T) needs to be changed as

it is no longer guaranteed that if c ≡ ab (mod T) DDH-Test always outputs 1. However,

we can use the distribution of outputs given by DDH-Test to solve the DDH problem.

Denote by Dab the distribution of DDH-Test outputs when c ≡ ab (mod T) and by Dc the

distribution of DDH-Test outputs when c 6≡ ab (mod T). Since O has a non-negligible

advantage, the two distributions are non-negligibly far. We can therefore call DDH-Test

sufficiently many times (derived from the Chernoff–Hoeffding bound) and determine if

the outputs follow Dab.

9.4.3 Other Bits

Applying the techniques in Section 5.1.1 immediately gives that any four consecutive bits

of Diffie–Hellman keys are as hard to compute as solving the DDH problem. Moreover,

a similar statement holds for the least significant bit.

Theorem 9.8. Let ε > 0, let 0 < i ≤ n and let g ∈ Z∗p be an element of prime order

T ≥ pε. Suppose O is an oracle which takes ga, gb ∈ Z∗p and outputs Bitsi,i+3(gab). Then

there exists a probabilistic polynomial-time algorithm that takes ga, gb, gc ∈ Z∗p, makes d

calls to O, and decides if c ≡ ab (mod T) with error probability (1 + o(1))/2d/0.4. The

same result holds if O outputs LSB1(gab).

117

Proof. Given Bitsi,i+3(gab) = (εi+3, . . . , εi) we compute α =
∑3

j=0 εi+j2
i+j so that gab =

2i+4β + 2iα + γ for some integers 0 ≤ β ≤ p/2i+4 and 0 ≤ γ < 2i. As explained in

Section 5.1.1 above, using the convergents from the continued fraction expansion of w/p,

for w =
(
(2i+4)−1 mod p

)
we obtain λ ∈ Z∗p such that |λ| < p/2i+2 and 0 < λ2i+4 ≤ 2i+2.

Then λ2iα + p/8 = λgab − (λ2i+4β − p/8 + λγ), and

∣∣∣λ2i+4β−p
8

+λγ
∣∣∣ ≤ ∣∣∣λ2i+4β−p

8

∣∣∣+|λ|γ < ∣∣∣∣p2i+2

2i+4
−p/8

∣∣∣∣+ p2i

2i+2
=
p

8
+
p

4
=

p

22+log(2/3)
<

p

21.4
.

Thus, λ2iα + p/8 = APPR0.4(λgab). Notice that since λ only depends on i and p, we in

fact get a deterministic representation of elements in Zp.
If O(ga, gb) = Bit0(gab), then α := Bit0(gab) = gab − 2β for 0 ≤ β ≤ p/2. We take

λ = (p+ 1)/2 = 2−1 so λα + bp/4e = λgab − (β − bp/4e) = APPR1(λgab).

In both cases, apply Theorem 9.6 with ga, gb, λgc.

We now consider the case of an oracle that computes a single bit of the Diffie–Hellman

key, that is O(ga, gb) = Biti(g
ab) for 0 < i < n. We need to show that when c 6≡ ab

(mod T) the probability that DDH-Test outputs 0 is non-negligible. The most challenging

part in approaching this case is the analysis of the distribution of gx. We use Lemma 9.3

for the case T > p1/3+ε to show that with non-negligible probability gx does not lie in

some highly linearly structured set.

We use the notation in Theorem 9.5, that is we define u = gab − gc and suppose

u 6= 0. Let Vt := {v ∈ Z∗p | Biti(g
abt) = Biti(g

abt − v)}. We analyze the probability

that ut ∈ Vt. Notice that Vt is not an interval, however it is still highly structured – it

consists of intervals of similar size (except for at most one interval), spaced according to

an arithmetic progression of difference 2i+1.

Let ` be the number of intervals. We can reduce the problem to ` independent

questions about the number of solutions Nλj(lj, hj) for 1 ≤ j ≤ `, where
∑
hj ≈ p/2. We

get that the number of values ut ∈ Vt is
∑`

j=1Nλj(lj, hj) which satisfies

∑̀
j=1

max
gcd(λj ,p)=1

∣∣∣∣Nλj(lj, hj)−
Thj
p

∣∣∣∣ =
∑̀
j=1

O(T 1−δ) ≤ `O(T 1−δ) .

This implies that the probability that ut ∈ Vt is 1
2

+ `O(T−δ), where δ is given in

Lemma 9.3. We therefore need `O(T−δ) to be non-negligibly far from 1/2. Lastly, notice

that without loss of generality we can assume that ` ≤ p1/2/2 as if ` > p1/2 (as happens

for the bottom half of the bits; notice hj ≤ p1/2/2) then taking λ = 2−i−1 permutes Vt

to contain at most ` ≤ p1/2/2 (then hj ≥ p1/2). We get, for example, that in the case

T = (p − 1)/2 all single bits, except of the middle O(log log(p)) bits, are as hard to

118

compute as solving the DDH problem.

Special Cases

We consider three special cases where one can prove that computing Biti(g
ab) for every

0 ≤ i ≤ n will solve the DDH problem.

Primes of a Special Form Fix 0 < i < n, and suppose that p is of the form p = λ2i+2+

r for some 0 < r < 2i. Then |λ2i+2| ≡ |r| < 2i (mod p) and λ = (p − r)/2i+2 < p/2i+2.

In this special case, applying the technique from Theorem 9.8 gives APPR1(λgab) which

we can solve using Theorem 9.6. Notice that this λ permutes all the subintervals in Vt

into one interval, as discussed in the previous section.

Modified DDH As noted above, if the values gbr were to be distributed uniformly

in Z∗p, then proving that with non-negligible probability ut 6∈ Vt would be very easy.

Consider the following variant of the DDH problem: p = 2q + 1 is a safe prime and

g generates Z∗p. Now, instead of taking a, b, c uniformly at random in [0, p − 1], the

challenger takes b (or a) to be odd, computes the Legendre symbol of gab, and then let

gc to have the same Legendre symbol. That is, if a (or b) is even, then c is chosen

uniformly at random in 2[0, q], and otherwise it is chosen from 2[1, q] − 1. Then, one

cannot use the Legendre symbol test to solve DDH, and since gb is a generator then the

values gbr distribute uniformly in Z∗p. Under this variant of the DDH problem, we get

that computing any single bit of the Diffie–Hellman key is as hard as solving this DDH

problem.

Stronger Oracle If instead of oracles with a fixed base point g that only take as input

ga, gb, one considers oracles that also take the base point as input, then one can “get out”

of the subgroup generated by g, and achieve uniform multipliers in Z∗p. We consider the

safe-prime case p = 2q+1 for a prime q, but this can be generalised. Suppose a generator

h for Z∗p has been found. Then there exists l such that g = h2l, and so ga = h2la and

gb = h2lb. Hence the Diffie–Hellman key gab = h4l2ab.

Notice that gbh = h2lb+1 is also a generator. We have gahr = h2la+r and gbh =

h2lb+1. Therefore, querying O(h, gahr, gbh) we receive a single bit of h(2la+r)(2lb+1) =

h4l2ab+2la+(2lb+1)r = (gabga)(gbh)r. Denote t := (gbh)r, and notice that t distributes uni-

formly in Z∗p. Lastly, given gc, we use DDH-Test on gcga to test if it equals to gabga.

Similar to the previous case, having uniform multipliers in Z∗p makes the proof easy.

We get that under this oracle model, computing any single bit of the Diffie–Hellman key

is as hard as solving the DDH problem.

119

Chapter 10

Concluding Remarks

This thesis presented a study of the hidden number problem and its applications to the

bit security of Diffie–Hellman key exchange. The hidden number problem in finite fields

has received the most attention in the literature and has been extensively studied. This

study explored other Diffie–Hellman groups, where first bit security results were given for

prime-field elliptic curves and algebraic tori, as well as for supersingular isogeny Diffie–

Hellman. These results were accomplished by reducing the computational Diffie–Hellman

problem to the problem of computing certain bits of the Diffie–Hellman keys. In a similar

fashion, the study improved the bit security results that rely on decisional Diffie-Hellman.

In the spirit of the times the study examined a Fourier analysis approach to the hidden

number problem and possible applications to the bit security of Diffie–Hellman schemes.

Furthermore, some results on Fourier concentrated functions were given.

The overall results in this field are far from being satisfactory. The fact that we

only have proofs that
√

log(p) bits of finite-field Diffie–Hellman keys or 5/6-th of all bits

of elliptic curve Diffie–Hellman keys are as hard to compute as the entire key does not

mean that it is possible to compute smaller portions of bits. In fact, it is believed that if

the Diffie–Hellman key exchange scheme takes place in a group of prime order, then no

partial information can be computed about the Diffie–Hellman key. Whether this lack

of reductions implies stronger security of the scheme is a question on the philosophical

side. For example, if one leaks half the bits of his elliptic curve Diffie–Hellman keys and

recovering his key remains intractable, should that be taken as an evidence that elliptic

curves obfuscate the keys very well and increase our belief in their security? Or should

this uncertainty implies less confidence in the security of the entire scheme?

It seems that new directions should be taken to improve the current results, further-

more it is known that the original lattice approach taken on the hidden number problem

cannot be used to prove the security of single bits (see the analysis in [71, Section 12.3.3]).

We briefly present new approaches to be further investigated.

120

10.1 Future Directions

In the original hidden number problem some structure can be obtained from the fact that

the problem gives rise to an arithmetic progression mod p. Let us explain, recall that one

receives pairs of the form (t, h) where

h = APPRk(st) ≡ st− e (mod p) ,

where s is a secret value to be recovered and e is unknown such that |e| ≤ p/2k+1 (this is

Fp-HNP with f = APPRk). Rearranging this equation we have s ≡ ht−1 + et−1 (mod p).

The right-hand side is an arithmetic progression (in Zp) of difference t−1, where e ranges

from −bp/2k+1c to bp/2k+1c. This fact allows us to represent s in the following way

s = n1x1 + · · ·+ nzxz + b ,

where the xi are bounded variables and n1, . . . , nz, b are known. Notice that the equality is

over the integers. Expressions of this form are called generalised arithmetic progressions,

or linear sets, and are closely related to the study of Bohr sets.

Moreover, it is the case that n1 > n2 > · · · > nz > b. In fact, this expression can be

thought of as a representation of s under the tuple (n1, . . . , nz, 1), as

(s mod n1) . . . mod nj = nj+1xj+1 + · · ·+ nzxz + b .

We introduce below a process that takes (t, h) and produces the value n1, . . . , nz, b.

The main obstacle is that the tuple (n1, . . . , nz) is dependent on the multiplier t, and

so for different multipliers we get different values. It is not clear how to combine in

general this information from the different samples, though we show below that one can

combine the information from pairs of samples, to reduce the (explicit) list of possible

secrets.

We remark that it should also be possible to combine three samples, but in general this

problem is closely related to simultaneous Diophantine approximation and the results of

Minkowski in this area. It is interesting to study if this approach of arithmetic progression

mod p has a strong relation to the theory of Beatty sequences.

We also remark that since the equations hold over the integers, from each sample

(ti, hi) one can form the modular relation

s ≡ ni2x
i
2 + · · ·+ nizix

i
zi + bi (mod ni1) .

This can lead to an interesting variant of the Chinese remainder theorem, with bounded

121

variables, where one tries to compute the smallest value that satisfies all of the modular

equations. It is of interest to examine if the theory of quantum computing can be of use

for such problems.

Lastly, one can define functions f i : Zp → C by

f i =
∑

xi1,...,x
i
zi

ω
ni1x

i
1+···+ni

zi
xi
zi

+bi

p ,

for which s is a heavy coefficient. As a product of exponential sums, these functions are

efficiently computable, and so it is interesting to see if tools from Fourier analysis can be

used to determine the unique simultaneous heavy coefficient.

In a different aspect, the hidden number problem is closely related to the learning

with errors problem. It is of great interest to study this relation in a rigour way. A

first approach of this kind was taken in [21], moreover the recent work [36] studies these

relations in great detail, using notions from Fourier analysis on finite groups.

Examples and Further Details

Given (t, h) it holds that h ≡ st−e (mod p), so over the integers we have h = st−e− lp,
for some integer l. Let n1 := t−1 (mod p), and express tn1 = m1p+ 1. Then

n1h = stn1 − en1 − lpn1 = s(m1p+ 1)− en1 − lpn1 = sm1p+ (s− en1)− lpn1 .

Dividing by p, we get

n1

p
h =

1

p
(sm1p+ (s− en1)− lpn1) = sm1 +

s

p
− en1

p
− ln1 .

Express s = n1x1 + s1, where s1 = s mod n1 for some integer 0 ≤ x1 ≤ p/n1 and let

ẽ1 := − s
p

+ en1

p
. We then have

n1

p
h = s1m1 − ẽ1 − (l − x1)n1 ≡ s1m1 − ẽ1 (mod n1) .

One can round this equation (this is not necessary; in fact also dividing by p is not

necessary, as we can work over the modulus pn1 with the secret sp), and express this

value as (m1, h̃1) which is an instance of the hidden number problem mod n1. Notice

that s/p < 1, so the number of bits that we have, which is reflected by ẽ1 has almost not

changed, as the concealed information by en1

p
over the modulus n1 is proportional to the

concealed information by e over the modulus p. However, the secret has changed and it

is now s1 = s mod n1. One can repeat this process until the noise term vanishes. We

122

give a brief example

Example 10.1. Let p = 15485863, s = 4925145, t = 9553044 and |e| ≤ 216. Suppose we

have the sample (t, 2305377), therefore

h1 = 2305377 = st1 − 10034 mod p .

Denoting n1 := −t−1 = 2554491 we have tn1 = 9553044 · 2554491 = 1575835p− 1 and so

m1 = 1575835. Thus

h̃1 := bn1

p
he = bs1m1 −

s

p
− en1

p
e = 380287 .

This gives the pair (m1, h̃1) over the modulus n1, with secret s1 = s mod n1 = 2370654,

where the noise term ẽ1 = b s
p

+ en1

p
e satisfies −10811 ≤ ẽ1 ≤ 10811 + 1.

We repeat where now we denote n2 := m−1
1 = 158917 and so m2 = 98034, and

h̃2 := bn2

n1

h̃1e = bs2m2 +
s1

n1

− ẽ1
n2

n1

e = 23658 .

This gives the pair (m2, h̃2) over the modulus n2, with secret s2 = s1 mod n2 = 145816,

where the noise term ẽ2 satisfies −674 ≤ ẽ1 ≤ 673.

We repeat this procedure to have n3 := 11819, n4 := 5270, n5 := 1279, and n6 = 154

where we have (m6 = 95, h̃6 = 23) and the noise term ẽ5 is either 0 or −1, therefore the

secret s6 ∈ {151, 104}. The following modulus is n7 = m−1
6 = 47, where in both cases the

secret s6 satisfies s6 mod 47 = 10.

We can therefore write

s = 2554491x1 + 158917x2 + 11819x3 + 5270x4 + 1279x5 + 154x6 + 10 .

Indeed, (((((s mod n1) mod n2) mod n3) mod n4) mod n5) mod n6 = 10. The bounds

on the variables are x1 < 7, x2 < 17, x3 < 14, x4 < 3, x5 < 5, x6 < 9.

Notice that this procedure runs in time polynomial in log(p) – in particular one can

guarantee to have |z| < log(p), as either ni or −ni is smaller than ni−1/2. We now explain

how the theory of continued fractions allows us to combine two samples.

In fact one does not have to take n1 to be ±t−1, but any desired value. The theory of

continued fractions, some of which is presented earlier, helps us to find “good” values n1

that on the one hand are small, and on the other give small remainders. This would allow

us to have shorter tuples (though larger variables xi). To combine different samples, one

would need to simultaneously work with different multipliers. Consider two instances

123

(t1, h1) and (t2, h2). Rephrasing the result of Vinogradov that is presented in 5.1.1, given

t−1
1 t2 and a bound λ, we can find integers x, y such that 0 < x ≤ λ, |xy| < p and

t−1
1 t2x ≡ y (mod p). Then t−1x ≡ z ≡ t−1

2 y, and so t1z ≡ x and t2z ≡ y. It seems

desirable to take λ =
√
p such that on multiplication by z, both residues are at most

√
p.

We then set n1 := z, which is now simultaneous for t1, t2. One can repeat this approach

for the subsequent values m1,m2 over modulus n1 etc. We give an example.

Example 10.2. As before, let p = 15485863, s = 4925145, t1 = 9553044 and |e| ≤
216, and let t2 = 10282847. Suppose we have the samples (t1, 2305377), (t2, 10772380),

therefore

h1 = 2305377 = st1 − 10034 mod p , h2 = 10772380 = st1 + 63875 mod p .

Using the continued fraction convergents of t−1
1 t2/p we find that t−1

1 t21654 ≡ −2269

(mod p). Then t−1
1 1654 ≡ 2512485 ≡ t−1

2 (−2269). Therefore, by setting n1 := 2512485

we have
n1

p
h1 = s1m

1
1 +

1654s

p
− e1n1

p
mod n1 ,

n1

p
h2 = s1m

2
1 −

2269s

p
− e2n1

p
mod n1 ,

where m1
1 = 1549922 and m2

1 = 1668328. We can therefore write (m1
1, 374033), (m2

1, 1747752)

as two samples of the hidden number problem mod 2512485 with secret s1 = s mod 2512485,

where the noise term ẽ1
1 on the first sample satisfies −12287 = −1654 − b216 n1

p
e ≤

ẽ1
1 ≤ b216 n1

p
e = 10633 and the noise term ẽ2

1 on the second sample satisfies −10633 =

−b216 n1

p
e ≤ ẽ1

1 ≤ 2269 + b216 n1

p
e = 12902.

We repeat this procedure to have n2 := 374371, n3 := 36582, n4 := 13453 and n5 :=

1634. We then have the samples (m1
5 = 1008, h̃1

5 = 243), (m2
5 = 1085, h̃2

5 = 1137) mod

1634 with secret s5 := ((((s1 mod n1) mod n2) mod n3) mod n4) mod n5, where the

noise term ẽ1
5 on the first sample satisfies −12 ≤ ẽ1

5 ≤ 100 and the noise term ẽ2
5 on the

second sample satisfies is −36 ≤ ẽ2
5 ≤ 32. For each of this samples, we range over all

the possible noise terms and list the candidates for s5 (as m1
5 divides n5 we work over

n5/2 = 817 and lift the solutions to n5). Then by intersecting these lists we find that

s5 ∈ {1242, 117}. Therefore, taking n6 := 1242− 117 = 1125 and s6 = s5 mod 1125, we

get s6 = 117. We can therefore write

s = 2512485x1 + 374371x2 + 36582x3 + 13453x4 + 1634x5 + 1125x6 + 117 .

Indeed, (((((s mod n1) mod n2) mod n3) mod n4) mod n5) mod n6 = 117. The bounds

on the variables are x1 < 7, x2 < 7, x3 < 11, x4 < 3, x5 < 9, x6 < 2. Therefore, this gives

124

a total of 7 · 7 · 11 · 3 · 9 · 2 = 29106 possible values for s. Notice that each single sample

gives rise to 217 + 1 = 131073, so by combining the two samples we have reduced the list

of possible values by a factor of ≈ 4.5.

125

References

[1] Akavia, A. (2009) “Solving Hidden Number Problem with One Bit Oracle and Ad-

vice,” in Halevi, S. (ed.) Advances in Cryptology – CRYPTO 2009. LNCS, vol. 5677,

pp. 337–354. Springer, Heidelberg.

[2] Akavia, A., Goldwasser, S., and Safra, S. (2003) “Proving Hard-Core Predicates

Using List Decoding,” in FOCS 2003, pp. 146–157. IEEE Computer Society, Wash-

ington, DC.

[3] Alexi, W., Chor, B., Goldreich, O., and Schnorr, C.P. (1988) “RSA and Rabin

Functions: Certain Parts are as Hard as the Whole,” in SIAM Journal on Computing,

17(2), 194–209.

[4] Aranha, D.F., Fouque, P.-A., Gérard B., Kammerer, J.-G., Tibouchi., M., and Za-

palowicz, J.-C. (2014) “GLV/GLS Decomposition, Power Analysis, and Attacks on

ECDSA Signatures with Single-Bit Nonce Bias,” in Sarkar, P., Iwata, T. (eds.) Ad-

vances in Cryptology – ASIACRYPT 2014. LNCS, vol. 8873, pp. 262–281. Springer,

Heidelberg.

[5] Babai, L. (1986) “On Lovász’ Lattice Reduction and the Nearest Lattice Point Prob-

lem,” in Combinatorica, 6(1), 1–13.

[6] Ben-Or, M., Chor, B., and Shamir, A. (1983) “On the Cryptographic Security of

Single RSA Bits,” Johnson, D.S., Fagin, R., Fredman, M.L., Harel, D., Karp, R.M.,

Lynch, N.A., Papadimitriou, C.H., Rivest, R.L., Ruzzo, W.L., Seiferas, J.I. (eds.)

STOC 1983, pp. 421–430. ACM, New York.

[7] Blake, I.F., and Garefalakis, T. (2004) “On the Complexity of the Discrete Logarithm

and Diffie–Hellman Problems,” in Journal of Complexity, 20(2-3), 148–170.

[8] Blake, I.F., Garefalakis, T., and Shparlinski, I.E. (2006) “On the Bit Security of the

Diffie–Hellman Key,” in Applicable Algebra in Engineering, Communication and

Computing, 16(6), 397–404.

126

[9] Blake, I.F., Seroussi, G., and Smart, N.P. (1999) Elliptic Curves in Cryptography.

Cambridge University Press.

[10] Bleichenbacher, D. (2000) “On the Generation of One-time Keys in DL Signature

Schemes,” Presentation at IEEE P1363 Working Group meeting.

[11] Blackburn, S.R., Gomez-Perez, D., Gutierrez, J, and Shparlinski, I.E. (2003) “Pre-

dicting the Inversive Generator,” in Paterson, K.G. (ed.) Cryptography and Coding.

LNCS, vol. 2898, pp. 264–275. Springer, Heidelberg.

[12] Blackburn, S.R., Gomez-Perez, D., Gutierrez, J, and Shparlinski, I.E. (2005) “Pre-

dicting Nonlinear Pseudorandom Number Generators,” in Mathematics of Compu-

tation, 74(251), 1471–1494.

[13] Brouwer, A.E., Pellikaan, R., and Verheul, E.R. (1999) “Doing More with Fewer

Bits,” in Advances in Cryptology – ASIACRYPT ’99, 321–332.

[14] Boneh, D. (1998) “The Decision Diffie–Hellman problem,” in Buhler, J.P. (ed.) Al-

gorithmic Number Theory – ANTS-III. LNCS, vol. 1423, pp. 48–63. Springer, Hei-

delberg.

[15] Boneh, D., Halevi, S., and Howgrave-Graham, N. (2001) “The Modular Inversion

Hidden Number Problem,” in Boyd, C. (ed.) Advances in Cryptology – ASIACRYPT

2001. LNCS, vol. 2248, pp. 36–51. Springer, Heidelberg.

[16] Boneh, D., and Shparlinski, I.E. (2001) “On the Unpredictability of Bits of the

Elliptic Curve Diffie–Hellman Scheme,” in Kilian, J. (ed.) Advances in Cryptology

– CRYPTO 2001. LNCS, vol. 2139, pp. 201–212. Springer, Heidelberg.

[17] Boneh, D., and Venkatesan, R. (1996) “Hardness of Computing the Most Significant

Bits of Secret Keys in Diffie–Hellman and Related Schemes,” in Koblitz, N. (ed.)

Advances in Cryptology – CRYPTO ’96. LNCS, vol. 1109, pp. 129–142. Springer,

Heidelberg.

[18] Boneh, D., and Venkatesan, R. (1997) “Rounding in Lattices and its Cryptographic

Applications,” in Saks, M.E. (ed.) SODA 1997, pp. 675–681. ACM/SIAM, Philadel-

phia.

[19] Bourgain, J., and Konyagin, S.V. (2003) “Estimates for the Number of Sums and

Products and for Exponential Sums over Subgroups in Fields of Prime Order,” in

Comptes Rendus Mathematique, Acad. Sci. Paris, Ser. I 337(2), 75–80.

127

[20] Bourgain, J., Glibichuk, A.A., and Konyagin, S.V. (2006) “Estimates for the Number

of Sums and Products and for Exponential Sums in Fields of Prime Order,” in

Journal of the London Mathematical Society, 73(2), 380–398.

[21] Brakerski, Z., Langlois, A., Peikert, C., Regev, R., and Stehlé, D. (2013) “Classical

Hardness of Learning with Errors,” in Proc. 45th ACM Symposium on Theory of

Computing – STOC 2013, pp. 575–584. ACM, New York.

[22] Childs, A.M., Jao, D., and Soukharev, V. (2014) “Constructing Elliptic Curve Isoge-

nies in Quantum Subexponential Time,” in Journal Mathematical Cryptology, 8(1),

1–29.

[23] Coppersmith, D. (1997) “Small Solutions to Polynomial Equations, and Low Expo-

nent RSA Vulnerabilities,” in Journal of Cryptology, 10(4), 233–260.

[24] Couveignes, J.-M. (2006) “Hard Homogeneous Spaces,” in Cryptology ePrint

Archive, Report 2006/291. http://eprint.iacr.org/2006/291.

[25] Cox, D.A. (1989) Primes of the Form x2 + ny2. John Wiley & Sons, Inc. New York.

[26] Cox, D.A., Little, J., and O’Shea, D. (2007) Ideals, Varieties, and Algorithms: An

Introduction to Computational Algebraic Geometry and Commutative Algebra. Un-

dergraduate Texts in Mathematics (3nd edition). Springer-Verlag, New York.

[27] De Mulder, E., Hutter, M., Marson, M.E., and Pearson, P. (2013) “Using Bleichen-

bacher’s Solution to the Hidden Number Problem to Attack Nonce Leaks in 384-Bit

ECDSA,” in Bertoni, G., Coron, J.-S. (eds.), CHES 2013, Springer LNCS 8086,

435–452.

[28] Diffie, W., and Hellman, M.E. (1976) “New directions in cryptography,” IEEE Trans-

actions on Information Theory, 12(6), 644–654.

[29] Duc, A., and Jetchev, D. (2012) “Hardness of Computing Individual Bits for One-

Way Functions on Elliptic Curves,” in Safavi-Naini, R., Canetti, R. (eds.) Advances

in Cryptology – CRYPTO 2012. LNCS, vol. 7417, pp. 832–849. Springer, Heidelberg.

[30] Fazio, N., Gennaro, R., Perera I.M., and Skeith, W.E. III (2013) “Hard-Core Predi-

cates for a Diffie–Hellman Problem over Finite Fields,” in Canetti, R., Garay, J.A.

(eds.) Advances in Cryptology – CRYPTO 2013. LNCS, vol. 8043, pp. 148–165.

Springer, Heidelberg.

[31] Galbraith, S.D. (2012) Mathematics of Public Key Cryptography. Cambridge Uni-

versity Press.

128

[32] Galbraith, S.D., Hopkins, H.J., and Shparlinski, I.E. (2004) “Secure Bilinear Diffie–

Hellman Bits,” in Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) Information Se-

curity and Privacy – ACISP 2004, Proc. 9th Australasian Conference. LNCS, vol.

3108, pp. 370–378. Springer, Heidelberg.

[33] Galbraith, S.D., Laity, J., and Shani, B. (2016) “Finding Significant Fourier Coeffi-

cients: Clarifications, Simplifications, Applications and Limitations,” under review.

arXiv:1607.01842 [cs.CR]. https://arxiv.org/abs/1607.01842.

[34] Galbraith, S.D., and Shani, B. (2015) “The Multivariate Hidden Number Problem,”

in Lehmann, A., Wolf, S. (eds.) Information Theoretic Security – ICITS 2015, Proc.

8th International Conference on Information-Theoretic Security. LNCS, vol. 9063,

pp. 250–268. Springer, Heidelberg.

[35] Galbraith, S.D., Petit, C., Shani, B., and Ti, Y.B. (2016) “On the Security of Su-

persingular Isogeny Cryptosystems,” in Cheon, J.H., Takagi, T. (eds.) Advances in

Cryptology – ASIACRYPT 2016. LNCS, vol. 10031, pp. 63–91. Springer, Heidelberg.

[36] Gama, N., Izabachène, M., Nguyen, P.Q., and Xie, X. (2016) “Structural Lattice

Reduction: Generalized Worst-Case to Average-Case Reductions and Homomorphic

Cryptosystems,” in Coron, J.-S., Fischlin, M. (eds.) Advances in Cryptology – EU-

ROCRYPT 2016. LNCS, vol. 9666, pp. 528–558. Springer, Heidelberg.

[37] Gilbert, A.C., Indyk, P., Iwen, M., and Schmidt, L. (2014) “Recent Developments in

the Sparse Fourier Transform,” in IEEE Signal Processing Magazine, 31(5), 91–100.

[38] Gong, M.I., and Harn, L. (1999) “Public-Key Cryptosystems Based on Cubic Finite

Field Extensions,” in IEEE Transactions on Information Theory, 45(7), 2601–2605.

[39] González Vasco, M.I., and Näslund, M. (2001) “A Survey of Hard Core Functions,”

in Lam, K.-Y., Shparlinski, I., Wang, H., Xing, C. (eds.) Proc. Workshop on Cryp-

tography and Computational Number Theory 1999. Progress in Computer Science

and Applied Logic, vol. 20, pp. 227–255. Birkhäuser, Basel.

[40] González Vasco, M.I., Näslund, M., and Shparlinski, I.E. (2004) “New Results on

the Hardness of Diffie–Hellman Bits,” in Bao, F., Deng, R., Zhou, J. (eds.) Public

Key Cryptography – PKC 2004. LNCS, vol. 2947, pp. 159–172. Springer, Heidelberg.

[41] González Vasco, M.I., and Shparlinski, I.E. (2001) “On the Security of Diffie-Hellman

Bits,” in Lam, K.-Y., Shparlinski, I., Wang, H., Xing, C. (eds.) Proc. Workshop

on Cryptography and Computational Number Theory 1999. Progress in Computer

Science and Applied Logic, vol. 20, pp. 257–268. Birkhäuser, Basel.

129

[42] Granger, R., Page, D., and Stam, M. (2004) “A Comparison of CEILIDH and XTR,”

in Buell, D. (ed.) Algorithmic Number Theory – ANTS-VI. LNCS, Vol. 3076, pp.

235–249. Springer-Verlag.

[43] Granger, R., and Vercauteren, F. (2005) “On the Discrete Logarithm Problem on

Algebraic Tori,” in Shoup, V. (ed.) Advances in Cryptology – CRYPTO 2005. LNCS,

Vol. 3621, pp. 66–85. Springer-Verlag.

[44] Gross, B.H. (1987) “Heegner Points and the Modular Curve of Prime Level,” in

Journal of the Mathematical Society of Japan, 39(2), 345–362.

[45] Howgrave-Graham, N., and Smart, N.P. (2001) “Lattice Attacks on Digital Signature

Schemes,” in Designs, Codes and Cryptography, 23(3), 283–290.

[46] H̊astad, J., and Näslund, M. (2003) “The Security of all RSA and Discrete Log Bits,”

in Journal of the ACM, 51(2), 187–230.

[47] Jao, D., and De Feo, L. (2011) “Towards Quantum-Resistant Cryptosystems from

Supersingular Elliptic Curve Isogenies,” in Yang, B.-Y. (ed.) Post-Quantum Cryp-

tography – PQCrypto 2011. LNCS, vol. 7071, pp. 19–34. Springer, Heidelberg.

[48] Jao, D., Jetchev, D., and Venkatesan, R. (2007) “On the Bits of Elliptic Curve Diffie–

Hellman Keys,” in Srinathan, K., Pandu Rangan, C., Yung, M. (eds.) Progress in

Cryptology – INDOCRYPT 2007. LNCS, vol. 4859, pp. 33–47. Springer, Heidelberg.

[49] Jetchev, D., and Venkatesan, R. (2008) “Bits Security of the Elliptic Curve Diffie–

Hellman Secret Keys,” in Wagner, D. (ed.) Advances in Cryptology – CRYPTO

2008. LNCS, vol. 5157, pp. 75–92. Springer, Heidelberg.

[50] Joux, A. (2000) “A One Round Protocol for Tripartite Diffie-Hellman,” in Bosma,

W. (ed.) Algorithmic Number Theory – ANTS-IV. LNCS, Vol. 1838, pp. 385–393.

Springer-Verlag.

[51] Kiltz, E. (2001) “A Primitive for Proving the Security of Every Bit and About

Universal Hash Functions & Hard Core Predicates,” in Freivalds, R. (ed.) Funda-

mentals of Computation Theory, Proc. 13th International Symposium, FCT 2001,

pp. 388–391. Springer-Verlag. Full paper available at http://homepage.ruhr-uni-

bochum.de/Eike.Kiltz/papers/hash_full.pdf.

[52] Koblitz, N. (1987) “Elliptic Curve Cryptosystems,” in Mathematics of Computation,

48(177), 203–209.

130

[53] Konyagin, S.V., and Shparlinski, I.E. (1999) Character Sums with Exponential Func-

tions and Their Applications. Cambridge University Press.

[54] Kushilevitz, E., and Mansour, Y. (1991) “Learning Decision Trees Using the Fourier

Sprectrum,” in Koutsougeras, C., Vitter, J.S. (eds.) STOC 1991, ACM, 455–464.

[55] Laity, J., and Shani, B. (2016) “On Sets of Large Fourier Transform

Under Changes in Domain,” under review. arXiv:1610.04330 [math.CA].

https://arxiv.org/abs/1610.04330.

[56] Lenstra, A.K., Lenstra, H.W. Jr., and Lovász, L. (1982) “Factoring Polynomials

with Rational Coefficients,” in Mathematische Annalen, 261(4), 515–534.

[57] Lenstra, A.K., and Verheul, E.R. (1999) “The XTR Public Key System,” in Bellare,

M. (ed.) Advances in Cryptology – CRYPTO 2000. LNCS, vol. 1880, pp. 1–19.

Springer, Heidelberg.

[58] Lenstra, A.K., and Verheul, E.R. (2001) “An Overview of the XTR Public Key

System,” in Alster, K., Urbanowicz, J., Williams H.C. (eds.) Proc. of the Public-

Key Cryptography and Computational Number Theory Conference, pp. 151–180.

Walter de Gruyter, Berlin.

[59] Li, W.-C.W., Näslund, M., and Shparlinski, I.E. (2002) “Hidden Number Problem

with the Trace and Bit Security of XTR and LUC,” in Yung, M. (ed.) Advances in

Cryptology – CRYPTO 2002. LNCS, vol. 2442, pp. 433–448. Springer, Heidelberg.

[60] Lidl, R., and Niederreiter, H. (1997) Finite Fields. Cambridge University Press.

[61] Ling, S., Shparlinski, I.E., Steinfeld, R., and Wang, H. (2012) “On the Modular

Inversion Hidden Number Problem,” in Journal of Symbolic Computation, 47(4),

358–367.

[62] Mansour, Y. (1992) “Randomized Interpolation and Approximation of Sparse Poly-

nomials,” in Proceedings of the 19th International Colloquium on Automata, Lan-

guages and Programming, 261–272.

[63] Maurer, U.M. (1994) “Towards the Equivalence of Breaking the Diffie-Hellman Pro-

tocol and Computing Discrete Logarithms,” in Desmedt, Y.G. (ed.) Advances in

Cryptology – CRYPTO ’94. LNCS, vol. 839, pp. 271–281. Springer, Heidelberg.

[64] Micciancio, D., and Voulgaris, P. (2013) “A Deterministic Single Exponential Time

Algorithm for Most Lattice Problems Based on Voronoi Cell Computations,” in

SIAM Journal on Computing, 42(3), 1364–1391.

131

[65] Miller, V.S. (1986) “Use of Elliptic Curves in Cryptography,” in Williams, H.C. (ed.)

Advances in Cryptology – CRYPTO ’85. LNCS, vol. 218, pp. 417–426. Springer,

Heidelberg.

[66] Moreno, C.J., and Moreno, O. (1991) “Exponential Sums and Goppa Codes: I,” in

Proc. Amer. Math. Soc., 111, 523–531.

[67] Morillo, P., and Ràfols, C. (2009) “The Security of All Bits Using List Decoding,”

in Jarecki, S., Tsudik, G. (eds.) Public Key Cryptography – PKC 2009: Proceed-

ings of the 12th International Conference on Practice and Theory in Public Key

Cryptography. LNCS, vol. 5443, pp. 15–33. Springer, Heidelberg.

[68] Nguyen, P.Q., and Shparlinski, I.E. (2002) “The Insecurity of the Digital Signature

Algorithm with Partially Known Nonces,” in Journal of Cryptology, 15(3), 151–176.

[69] Nguyen, P.Q., and Shparlinski, I.E. (2003) “The Insecurity of the Elliptic Curve Dig-

ital Signature Algorithm with Partially Known Nonces,” in Journal of Cryptology,

30(2), 201–217.

[70] Nguyen, P.Q., and Stern, J. (2001) “The Two Faces of Lattices in Cryptology,” in

Silverman, J.H. (ed.) Cryptography and Lattices 2001. LNCS, vol. 2146, pp. 146–180.

Springer, Heidelberg.

[71] Nguyen, P.Q., and Tibouchi, M. (2012) “Lattice-Based Fault Attacks on Signatures,”

in Fault Analysis in Cryptography. Information Security and Cryptography, pp. 201–

220. Springer, Heidelberg.

[72] Rostovtsev, A., and Stolbunov, A. (2006) “Public-Key Cryptosystem

Based on Isogenies,” in Cryptology ePrint Archive, Report 2006/145.

http://eprint.iacr.org/2006/145.

[73] Rubin, R., and Silverberg, A. (2003) “Torus-Based Cryptography,” in Boneh, D.

(ed.) Advances in Cryptology – CRYPTO 2003. LNCS, vol. 2729, pp. 349–365.

Springer, Heidelberg.

[74] Rubin, R., and Silverberg, A. (2004) “Using Primitive Subgroups to Do More with

Fewer Bits,” in Buell, D. (ed.) Algorithmic Number Theory – ANTS-VI. LNCS, Vol.

3076, pp. 18–41. Springer-Verlag.

[75] Rubin, R., and Silverberg, A. (2008) “Compression in Finite Fields and Torus-Based

Cryptography,” in SIAM Journal on Computing, 37(5), 1401–1428.

132

[76] Schnorr, C.P. (1987) “A Hierarchy of Polynomial Time Lattice Basis Reduction

Algorithms,” in Theoretical Computer Science, 53(2-3), 201–224.

[77] Shani, B. (2017) “On the Bit Security of Elliptic Curve Diffie–Hellman,” in Fehr,

S. (ed.) Public Key Cryptography – PKC 2017. LNCS, vol. 10174, pp. 361–387.

Springer, Heidelberg.

Full paper appears in Cryptology ePrint Archive, Report 2016/1189.

http://eprint.iacr.org/2016/1189.

[78] Shoup, V. (1997) “Lower Bounds for Discrete Logarithms and Related Problems,”

in Fumy, W. (ed.) Advances in Cryptology – EUROCRYPT ’97. LNCS, vol. 1233,

pp. 256–266. Springer, Heidelberg.

[79] Shparlinski, I.E. (2001) “On the Generalised Hidden Number Problem and Bit Se-

curity of XTR,” in Boztas, S., Shparlinski, I.E. (eds.) Applied Algebra, Algebraic

Algorithms and Error-Correcting Codes. LNCS, vol. 2227, pp. 268–277. Springer,

Heidelberg.

[80] Shparlinski, I.E. (2001) “Sparse Polynomial Approximation in Finite Fields,” in

Proc. 33rd ACM Symposium on Theory of Computing – STOC 2001, pp. 209–215.

ACM, New York.

[81] Shparlinski, I.E. (2004) “Security of Polynomial Transformations of the Diffie–

Hellman Key,” in Finite Fields and Their Applications, 10(1), pp. 123–131.

[82] Shparlinski, I.E. (2005) “Playing “Hide-and-Seek” with Numbers: The Hidden Num-

ber Problem, Lattices and Exponential Sums,” in Garrett, P., Lieman, D. (eds.)

Public-Key Cryptography; Proceedings of Symposia in Applied Mathematics, vol.

62, AMS, pp. 153–177.

[83] Shparlinski, I.E., and Winterhof, A. (2003) “A Hidden Number Problem in Small

Subgroups,” in Mathematics of Computation 2005, vol. 74, pp. 2073–2080.

[84] Shparlinski, I.E., and Winterhof, A. (2004) “A Nonuniform Algorithm for the Hidden

Number Problem in Subgroups,” in Bao, F., Deng, R.H., Zhou, J. (eds.) Public Key

Cryptography – PKC 2004. LNCS, vol. 2947, pp. 416–424. Springer, Heidelberg.

[85] Silverman, J.H. (2009) The Arithmetic of Elliptic Curves. Graduate Texts in Math-

ematics, vol. 106 (2nd edition). Springer-Verlag, New York.

[86] Smith, P., and Skinner, C. (1995) “A Public-Key Cryptosystem and a Digital Sig-

nature System Based on the Lucas Function Analogue to Discrete Logarithms,” in

133

Pieprzyk, J., Safavi-Naini, R. (eds.) Advances in Cryptology – ASIACRYPT ’94.

LNCS, vol. 917, pp. 355–364. Springer, Heidelberg.

[87] Stam, M. (2003) “Speeding up Subgroup Cryptosystems.” Ph.D. Thesis, Technische

Universiteit Eindhoven.

[88] Stinson, D.R. (2005) Cryptography: Theory and Practice. Discrete Mathematics and

Its Applications (3rd edition). CRC Press.

[89] Stolbunov, A. (2010) “Constructing Public-key Cryptographic Schemes Based on

Class Group Action on a Set of Isogenous Elliptic Curves,” in Advances in Mathe-

matics of Communications, 4(2), 215–235.

[90] Terras, A. (1999) Fourier Analysis on Finite Groups and Applications. London Math-

ematical Society Student Texts (No. 43), Cambridge University Press. Cambridge.

[91] Verheul, E.R. (2000) “Certificates of Recoverability with Scalable Recovery Agent

Security,” in Imai, H., Zheng, Y. (eds.) Public Key Cryptography – PKC 2000.

LNCS, vol. 1751, pp. 258–275. Springer, Heidelberg.

[92] Vinogradov, J.M. (1927) “On a General Theorem Concerning the Distribution of

the Residues and Non-Residues of Powers,” in Transactions of the American Math-

ematical Society, 29(1), 209–217.

[93] Wang, Y., and Lv, K. (2016) “The Security of Polynomial Information of Diffie–

Hellman Key,” in Information and Communications Security ICICS 2016, pp. 71–81.

[94] Wang, M., Zhan, T., and Zhang, H. (2016) “Bit Security of the CDH Problems over

Finite Fields,” in Selected Areas in Cryptography – SAC 2015, pp. 441–461.

[95] Xu, J., Hu, L., Huang, Z., and Peng, L. (2014) “Finding Small Solutions of a Class

of Simultaneous Modular Equations and Applications to Modular Inversion Hid-

den Number Problem and Inversive Congruential Generators,” in Cryptology ePrint

Archive, Report 2014/843. http://eprint.iacr.org/2014/843.

[96] Zhang, Fangguo (2015) “Bit Security of the Hyperelliptic Curves Diffie–

Hellman Problem,” in Cryptology ePrint Archive, Report 2015/614.

http://eprint.iacr.org/2015/614.

134

