Attacks and Defenses

Dr. Falko Strenzke

fstrenzke@cryptosource.de

cryptosource

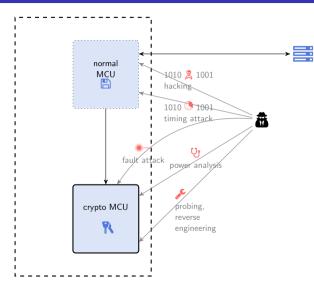
Cryptography. Security.

© Falko Strenzke 2020 For evaluation purposes only Please do not distribute

August 4, 2020

For evaluation purposes only

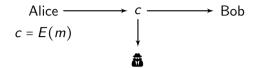
1 Attacks and Attack Resistance


2 Hardware Security Solutions

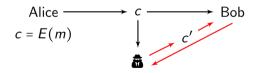
Dr. Falko Strenzke

For evaluation purposes only

Attacks on Cryptographic Implementations


Dr. Falko Strenzke

For evaluation purposes only


э

イロト 不得 トイヨト イヨト

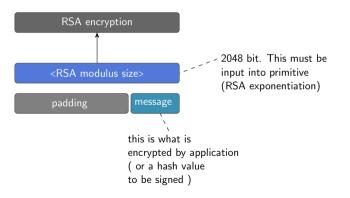
- no physical access required remote attacks
- "hacking"
- exploit
 - implementation flaws, e.g. buffer overflows
 - software fault attacks (decryption oracle attacks)
 - timing attacks
- scales well for attacker with low risk of detection
- some cryptography-specific software attacks exist

• classical attack scenario in cryptography: passive attacks

• Around 2000: active attacks

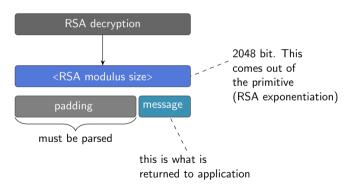
Padding Oracle Attacks

- CBC mode encrypts full multiples of the block length
- requires filling up of final block with padding bytes:
 - PKCS#7 Padding: *E_k*(<data> |4|4|4|4)
- Padding Oracle Attack:
 - Attacker manipulates CBC-encrypted ciphertext
 - triggers decryption
 - well-formed padding: no error
 - malformed padding: error indicated

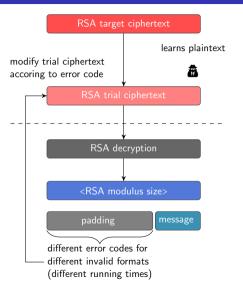


- Powerful attack which leads to total decryption of the plaintext
- Many vulnerabilities
 - SSL, IPsec: padding oracle (2002)
 - TLS: "Lucky 13" (2015), a timing attack variant
 - XML Encryption: application oracle (2011)

• A authenticity (MAC, signature) must be verified prior to decryption


Public-key Decryption Oracle Attacks in Practice

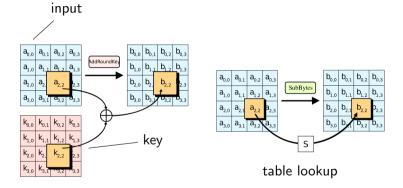
• PKCS#1 v1.5 encryption encoding for RSA



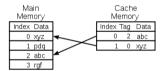
Public-key Decryption Oracle Attacks in Practice

• PKCS#1 v1.5 encryption encoding for RSA

Public-key Decryption Oracle Attacks in Practice



- 1993: RSA-PKCS#1 v1.5 encryption
- 1998: Bleichenbacher describes attack
 - decryption of ciphertext after many queries
- 2008: TLS 1.2 released
 - uses vulnerable PKCS#1 v1.5
 - specifies complicated countermeasures
- (2012: Attacks against XML Encryption)
- 2017: ROBOT ("Return Of Bleichenbacher's Oracle Threat")
 - many affected network devices


- Timing attacks are side-channel attacks
 - Trivial timing attack: byte-wise MAC comparison
 - Kocher 1996: Cryptographic timing attacks
 - Running time of RSA decryption is dependent on the private key
 - Many measurements and sophisticated statistical analysis may allow extraction of the private key

Cache-Timing Attacks on AES

• Efficient software implementations of AES use lookup tables for the SubBytes operation

- The indexing into the lookup table depends on a key byte
- $x = \text{Table}[k_3 \oplus y]$ where y is a known input

For evaluation purposes only

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

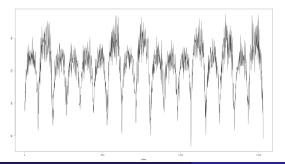
E 990

Cache-Timing Attacks on AES

- The indexing into the lookup table depends on a key byte
- $x = \text{Table}[k_3 \oplus y]$ where y is a known input

- repeated indexing into the same cache line: faster
- statistical analysis reveals key
- highly relevant for embedded systems with more deterministic timing behaviour
- (Note: cache-timing is used as a covert channel in Meltdown)

• constant time implementations


- no conditional branching based on secret values
- hard to verify interplay with compiler
- does not help against other side channel attacks
- executing operations on randomly transformed inputs
- random delays
- specifically against cache-attacks:
 - cache warming
 - effectiveness depends on exact context

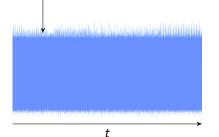
- scenario: attacker has (temporary) access to a device
 - a (stolen) smart card
 - "lunch-time" or "evil maid" attack
- attacker can trigger cryptographic operation
- perform measurements
- known in the smart card industry for decades

- Power Analysis Attacks
 - Power consumption of a CPU is dependent on
 - instruction type: higher for multiplication than addition
 - on the data: switching a register from $0 \times 00...00$ to $0 \times FF..FF$ requires more energy than to flipping a single bit

Simple Power Analysis against RSA

$$r = 1$$

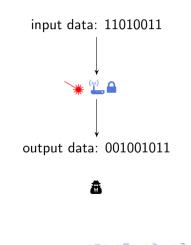
for i = |d| down to 0
r = r*r mod n
if d[i] == 1
r = r * m mod n
return r as c



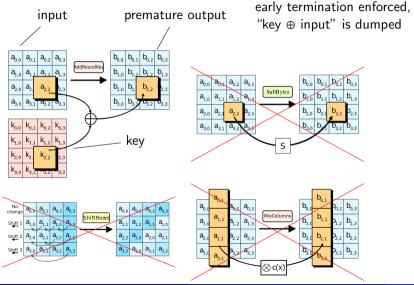
Courtesy of

Differential Power Analysis

- attack a single key byte in AES at a time
- $x = k_i \oplus y$
- y part of the input
- many different inputs with all 256 values of y
- measure power traces
- find points of greatest variation
- formulate hypotheses, e.g. x = 0 lowest / highest power consumption
- determine trace with lowest/highest power consumption → candidate for k_i
- repeat for all key bytes



- measure electromagnetic emanation (EM) instead of power consumption
- directly on the chip
 - locate interesting functional block, e.g. register
 - measure EM emanation locally
- measurements from distance
 - less effective


- add random noise
- add random delays
- masking internal values
 - instead of $x = k_i \oplus y$
 - compute $x' = (m \oplus k_i) \oplus y$
- dual rail implementation: compensate differences
- shielding against EM emanation

Hardware Fault Attacks

- Active attacks
- locate targeted functional unit on the chip
- use EM pulse or laser
- during a cryptographic operation
- effects
 - step over instruction
 - alter register values
- goals:
 - dump keys
 - dump intermediate values
 - evade security checks
- single run with low success probability
- many repetitions, automation

Example: Fault Attack against AES

Dr. Falko Strenzke

- Redundant hardware layouts
- repeat operations and compare
- counter operations: verify encryption by decryption
- attack detection (and reaction)
- HW/SW checksums

Probing Attacks / Reverse Engineering

- Probing Attack / Reverse Engineering
- "there are no secrets in silicon"
- Chemical and mechanical removal of layers
- Analysing the gate structure
- Data extraction
- ostly!
- Typical gains for the attacker
 - learning IP (firmware)
 - learning proprietary cryptographic algorithms
 - breaking them e.g. DECT (*)
 - learn system-wide master keys
 - find software bugs that allow remote exploitation

(*) https://dedected.org/trac/raw-attachment/wiki/ DSC-Analysis/FSE2010-166.pdf

- Security against physical attacks only with dedicated security modules
- a.k.a.
 - "security MCU"
 - "crypto chip"
 - "hardware security module"
 - "secure element"
- speed-up of cryptographic operations
- Typical features of security controllers
 - hardware random number generator
 - symmetric cryptographic engine (AES, Hash)
 - public-key support: modular arithmetic (RSA, ECC)
 - Fault attack and side-channel countermeasures
 - protection against probing attacks

• FIPS 140-2 standard

- NIST standard for the classification of cryptographic modules
- Level 1 no physical security measures
- Level 2 temper evidence
- Level 3 basic temper resistance
- Level 4 higher temper resistance
- Common Criteria (CC)
 - international standard for general security certification of IT components
 - complex methodology
 - Evaluation Assure Level (EAL) 1 7
 - EAL 3 "minimum"
 - EAL 7 high security
 - mostly EAL 3 5
 - influences evaluation methodology as well as physical resistance

Types of Security Controllers

- 🔒 "closed" cryptographic MCU
 - accessed via serial interface
 - typically supported features
 - key generation
 - secure key storage
 - execution of cryptographic operations
 - suitable for instance for device identification/authentication
- = smart card controllers / secure elements
 - security controller with certified security OS
 - supports
 - secure file system
 - key management
 - cryptographic operations
 - sometimes custom JAVACard applications supported
 - fulfils high security requirements

- \bullet </> ''open" security controller with cryptographic coprocessor
 - ${\scriptstyle \bullet} \,$ shipped without OS
 - freely programmable
 - can run OS and/or application and perform security sensitive and cryptographic operations
 - usually high level of know-how required

Conclusion for Attacks and Defenses

- Types of Attacks
 - 🖺 / 🕓 "Software Attacks" / Timing Attacks
 - remote attacks
 - scale well, can be automated!
 - precondition: vulnerable scheme or implementation
 - defense: sound implementation, countermeasures
 - 🕑 Passive "Hardware Attacks"
 - side channel attacks
 - precondition: control over device or at least proximity
 - defense: Hardware and software countermeasures (use of security controller)
 - Active "Hardware Attacks"
 - Fault Attacks
 - precondition: control over device
 - defense: security controller
 - 差 Probing Attacks / Reverse Engineering
 - recover secrets stored on the controller
 - commercial services exist for this
 - precondition: control over device
 - defense: security controller