
This is a personal blog. My other stu�: book | home page | Substack

October 01, 2014

Bash bug: the other two RCEs, or how we chipped away at

the original �x (CVE-2014-6277 and '78)

The patch that implements a pre�x-based way to mitigate vulnerabilities in bash function

exports has been out since last week and has been already picked up by most Linux vendors

(plus by Apple). So, here's a quick overview of the key developments along the way, including

two really interesting things: proof-of-concept test cases for two serious, previously non-

public RCE bugs tracked as CVE-2014-6277 and CVE-2014-6278.

NOTE: If you or your distro maintainers have already deployed Florian's patch, there is no

reason for alarm - you are almost certainly not vulnerable to attacks. If you do not have this

patch, and instead relied only on the original CVE-2014-6271 �x, you probably need to act

now. See this entry for a convenient test case and other tips.

Still here? Good. If you need a refresher, the basic principles of the underlying function export

functionality, and the impact of the original bash bug (CVE-2014-6271), are discussed in this

blog post. If you have read the earlier post, the original attack disclosed by Stephane Chazelas

should be very easy to understand:

HTTP_COOKIE='() { 0; }; echo hi mom;' bash -c :

In essence, the internal parser invoked by bash to process the specially encoded function

de�nitions passed around in environmental variables had a small problem: it continued

parsing the code past the end of the function de�nition itself - and at that point, �at out

executed whatever instructions it came across, just as it would do in a normal bash script.

Given that the value of certain environmental variables can be controlled by remote attackers

in quite a few common settings, this opened up a good chunk of the Internet to attacks.

The original vulnerability was reported privately and kept under embargo for roughly two

weeks to develop a fairly conservative �x that modi�ed the parser to bail out in a timely

manner and do not parse any trailing commands. As soon as the embargo was lifted, we all

found out about the bug and scrambled to deploy �xes. At the same time, a good chunk of

the security community reacted with surprise and disbelief that bash is keen to dispatch the

contents of environmental variables to a fairly complex syntax parser - so we started poking

around.

Tavis was the quickest: he found that you can convince the parser to keep looking for a �le

name for output redirection past the boundary between the untrusted string accepted from

the environment and the actual body of the program that bash is being asked to execute

(CVE-2014-7169). His original test case can be simpli�ed at:

HTTP_COOKIE='() { function a a>\' bash -c echo

This example would create an empty �le named "echo", instead of executing the requested

command. Tavis' �nding meant that you would be at risk of remote code execution in

situations where attacker-controlled environmental variables are mixed with sanitized,

attacker-controlled command-line parameters passed to calls such as system() or popen(). For

example, you'd be in trouble if you were doing this in a web app:

system("echo '"+ sanitized_string_without_quotes + "' | /some/trusted/program");

...because the attacker could convince bash to skip over the "echo" command and execute the

command given in the second parameter, which happens to be a sanitized string (albeit

probably with no ability to specify parameters). On the �ip side, this is a fairly speci�c if not

entirely exotic coding pattern - and contrary to some of the initial reports, the bug probably

wasn't exploitable in a much more general way.

Chet, the maintainer of bash, started working on a �x to close this speci�c parsing issue, and

released it soon thereafter.

lcamtuf's old blog
6938fa21fa047e65c7e0ca6f77d5ecf5bd2365c96e3b1e7bb5904e00e712b379

http://lcamtuf.coredump.cx/prep/
http://lcamtuf.coredump.cx/
http://lcamtuf.substack.com/
https://lcamtuf.blogspot.com/2014/10/bash-bug-how-we-finally-cracked.html
http://www.openwall.com/lists/oss-security/2014/09/25/13
http://lcamtuf.blogspot.com/2014/09/bash-bug-apply-unofficial-patch-now.html
http://lcamtuf.blogspot.com/2014/09/quick-notes-about-bash-bug-its-impact.html
http://ftp.gnu.org/gnu/bash/bash-4.3-patches/bash43-026
https://lcamtuf.blogspot.com/

On the same day, Todd Sabin and Florian Weimer have independently bumped into a static

array over�ow in the parser (CVE-2014-7186). The bug manifested in what seemed to be a

non-exploitable crash, trying to dereference a non-attacker-controlled pointer at an address

that "by design" should fall well above the end of heap - but was enough to cast even more

doubt on the robustness of the underlying code. The test for this problem was pretty simple -

you just needed a sequence of here-documents that over�owed a static array, say:

HTTP_COOKIE='() { 0 <<a <<b <<c <<d <<e <<f <<g <<h <<i <<j <<k <<l <<m; }' bash -c :

Florian also bumped into an o�-by-one issue with loop parsing (CVE-2014-7187); the proof-of-

concept function de�nition for this is a trivial for loop nested 129 levels deep, but the e�ect

can be only observed under memory access diagnostics tools, and its practical signi�cance is

probably low. Nevertheless, all these revelations prompted him to start working on an

uno�cial but far more comprehensive patch that would largely shield the parser from

untrusted strings in normally encountered variables present in the environment.

In parallel to Tavis' and Florian's work, I set up a very straightforward fuzzing job with

american fuzzy lop. I seeded it with a rudimentary function de�nition:

() { foo() { foo; }; >bar; }

...and simply let it run with a minimalistic wrapper that took the test case generated by the

fuzzer, put it in a variable, and then called execve() to invoke bash.

Although the fuzzer had no clue about the syntax of shell programs, it had the bene�t of

being able to identify and isolate interesting syntax based on coverage signals, deriving

around 1,000 other distinctive test cases from the starting one while "instinctively" knowing

not to mess with the essential "() {" pre�x. For the �rst few hours, it kept hitting only the

redirect issue originally reported by Todd and the �le-creation issue discovered by Tavis - but

soon thereafter, it spewed out a new crash illustrated by this snippet of code (CVE-2014-

6277):

HTTP_COOKIE='() { x() { _; }; x() { _; } <<a; }' bash -c :

This proved to be a very straightforward use of uninitialized memory: it hit a code path in

make_redirect() where one �eld in a newly-allocated REDIR struct - here_doc_eof - would not

be set to any speci�c value, yet would be treated as a valid pointer later on (somewhere in

copy_redirect()).

Now, if bash is compiled with both --enable-bash-malloc and --enable-mem-scramble, the

memory returned to make_redirect() by xmalloc() will be set to 0xdf, making the pointer

always resolve to 0xdfdfdfdf, and thus rendering the prospect of exploitation far more

speculative (essentially depending on whether the stack or any other memory region can be

grown by the attacker to overlap with this address). That said, on a good majority of Linux

distros, these �ags are disabled, and you can trivially get bash to dereference a pointer that is

entirely within attacker's control:

HTTP_COOKIE="() { x() { _; }; x() { _; } <<`perl -e '{print "A"x1000}'`; }" bash -c :

bash[25662]: segfault at 41414141 ip 00190d96 sp bfbe6354 error 4 in libc-

2.12.so[110000+191000]

The actual fault happens because of an attempt to copy here_doc_eof to a newly-allocated

bu�er using a C macro that expands to the following code:

strcpy(xmalloc(1 + strlen(redirect->here_doc_eof)), (redirect->here_doc_eof))

This appears to be exploitable in at least one way: if here_doc_eof is chosen by the attacker to

point in the vicinity of the current stack pointer, the apparent contents of the string - and

therefore its length - may change between stack-based calls to xmalloc() and strcpy() as a

natural consequence of an attempt to pass parameters and create local variables. Such a mid-

macro switch will result in an out-of-bounds write to the newly-allocated memory.

A simple conceptual illustration of this attack vector would be:

char* result;

int len_alloced;

main(int argc, char** argv) {

 /* The offset will be system- and compiler-specific */;

 char* ptr = &ptr - 9;

https://code.google.com/p/american-fuzzy-lop/

 result = strcpy (malloc(100 + (len_alloced = strlen(ptr))), ptr);

 printf("requested memory = %d\n"

 "copied text = %d\n", len_alloced + 1, strlen(result) + 1);

}

When compiled with the -O2 �ag used for bash, on one test system, this produces:

requested memory = 2

copied text = 28

Of course, the result will vary from system to system, but the general consequences of this

should be fairly evident. The issue is also made worse by the fact that only relatively few

distributions were building bash as a position-independent executable that could be fully

protected by ASLR.

(In addition to this vector, there is also a location in dispose_cmd.c that calls free() on the

pointer under some circumstances, but I haven't really really spent a lot of time trying to

develop a functioning exploit for the '77 bug for reasons that should be evident in the text

that follows... well, just about now.)

It has to be said that there is a bit less glamour to such a low-level issue that still requires you

to go through some mental gymnastics to be exploited in a portable way. Luckily, the fuzzer

kept going, and few hours later, isolated a test case that, after minimization, yielded this gem

(CVE-2014-6278):

HTTP_COOKIE='() { _; } >_[$($())] { echo hi mom; id; }' bash -c :

I am... actually not entirely sure what happens here. A sequence of nested $... statements

within a redirect appears to cause the parser to bail out without properly resetting its state,

and puts it in the mood for executing whatever comes next. The test case works as-is with

bash 4.2 and 4.3, but not with more ancient releases; this is probably related to changes

introduced few years ago in bash 4.2 patch level 12 (xparse_dolparen()), but I have not

investigated if earlier versions are patently not vulnerable or simply require di�erent syntax.

The CVE-2014-6278 payload allows straightforward "put-your-commands-here" remote code

execution on systems that are protected only with the original patch - something that we

were worried about for a while, and what prompted us to ask people to update again over the

past few days.

Well, that's it. I kept the technical details of the last two �ndings embargoed for a while to

give people some time to incorporate Florian's patch and avoid the panic associated with the

original bug - but at this point, given the scrutiny that the code is under, the ease of

discovering the problems with o�-the-shelf open-source tools, and the availability of

adequate mitigations, the secrecy seems to have outlived its purpose.

Any closing thoughts? Well, I'm not sure there's a particular lesson to be learnt from the

entire story. There's perhaps one thing - it would probably have been helpful if the

questionable nature of the original patch was spotted by any of the noti�ed vendors during

the two-week embargo period. That said, I wasn't privy to these conversations - and hindsight

is always 20/20.

11 comments:

Replies

Chris October 01, 2014 3:17 PM

Can you make any comment as to where 4.3 u28 �ts into this whole situation? I was under the impression
from previous comments here (and elsewhere) that 4.3 u27, posted by Chet this past Saturday after the
various redhat updates, resolved all six of the currently-known Bash CVEs (including CVE-2014-7186 and
CVE-2014-7187.) As such, I am surprised to see 4.3 u28 being released, especially with no accompanying
updates from redhat since the 26th. Just trying to �gure out how 4.3 u28 �ts in and whether it speci�cally
addresses any CVEs, since I had (perhaps incorrectly) surmised that 4.3 u27 resolved/mitigated these
various CVEs being discussed.

Reply

Michal Zalewski October 01, 2014 4:58 PM

4.3.27 does not resolve all known issues, but adopts Florian's mitigation that shields the parser from
untrusted inputs in normal use cases. The subsequent patch (28) actually eliminates CVE-2014-7186 and
CVE-2014-7187, but with patch 27 in place, they do not pose a security risk. Two more to go, probably in
patch 29.

Reply

Unknown October 02, 2014 6:04 AM

4.3.28 can resolve all 6 issues ? thanks very much

http://code.google.com/p/tmin/
http://lcamtuf.blogspot.com/2014/09/bash-bug-apply-unofficial-patch-now.html
http://www.pcworld.com/article/2688932/improved-patch-tackles-new-shellshock-attack-vectors.html
javascript:;
https://www.blogger.com/profile/17621245117904138662
https://lcamtuf.blogspot.com/2014/10/bash-bug-how-we-finally-cracked.html?showComment=1412201822785#c5979153687833863233
javascript:;
https://www.blogger.com/profile/07964553034419471588
https://lcamtuf.blogspot.com/2014/10/bash-bug-how-we-finally-cracked.html?showComment=1412207913134#c967677508277435137
javascript:;
https://www.blogger.com/profile/12397515067077639085
https://lcamtuf.blogspot.com/2014/10/bash-bug-how-we-finally-cracked.html?showComment=1412255083245#c8296121984357333734

Newer Post Older Post

Reply

Replies

Reply

Replies

Reply

Replies

Reply

To leave a comment, click the button below to sign in with Google.

SIGN IN WITH GOOGLE

Note: Only a member of this blog may post a comment.

Home

Subscribe to: Post Comments (Atom)

Chris October 02, 2014 6:05 AM

Thanks Michal! I assume that when you refer to Bash needing to update to resolve two more
CVEs, you are referring to CVE-2014-6277 and 6278, correct?

Unknown October 02, 2014 7:48 PM

Bash 4.3.29 released on 10.2, I think this can resolve all of 6 issues, hope I am right

jul October 01, 2014 6:50 PM

if you can't be totally sure how that beast is doing, I am pretty scared.

Reply

Rich Neswold October 02, 2014 3:43 PM

Exactly. The lesson here, for me, is that I'm not getting enough bang-for-the-buck out of bash
to warrant the security risks. I'll simply uninstall it from my systems.

Unknown February 21, 2015 7:53 PM

Hello everyone, just a quick question...

My impression is that scanning applies to known vulnerabilities, fuzzing is for discovering new ones, and
the term "testing" can apply to both. Is that correct?

-Rick

Reply

Michal Zalewski February 21, 2015 9:27 PM

Broadly speaking, sure.

Unknown February 23, 2015 3:44 PM

...here's a very recent exploit that appears to be related to Shellshock... I just think the
survivability(undetectability) and evolution of these exploits is remarkable...

https://securityblog.redhat.com/2015/02/23/samba-vulnerability-cve-2015-0240/

any thots? thanks-in-advance!

Reply

Unknown February 24, 2015 4:40 AM

apologies, in my post above, i meant to link to this article,
https://securityblog.redhat.com/2014/09/24/bash-specially-crafted-environment-variables-
code-injection-attack/

thanks again for any insights...

https://lcamtuf.blogspot.com/2014/10/fuzzing-binaries-without-execve.html
https://lcamtuf.blogspot.com/2014/09/bash-bug-apply-unofficial-patch-now.html
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
https://lcamtuf.blogspot.com/
https://lcamtuf.blogspot.com/feeds/9002736326250250918/comments/default
https://www.blogger.com/profile/17621245117904138662
https://lcamtuf.blogspot.com/2014/10/bash-bug-how-we-finally-cracked.html?showComment=1412255103029#c1168636859167586583
https://www.blogger.com/profile/12397515067077639085
https://lcamtuf.blogspot.com/2014/10/bash-bug-how-we-finally-cracked.html?showComment=1412304536860#c8992052139197759474
https://www.blogger.com/profile/06120175983940571527
https://lcamtuf.blogspot.com/2014/10/bash-bug-how-we-finally-cracked.html?showComment=1412214638254#c7274258578907269219
javascript:;
https://www.blogger.com/profile/12513191030452235173
https://lcamtuf.blogspot.com/2014/10/bash-bug-how-we-finally-cracked.html?showComment=1412289805527#c8312116213626864674
https://www.blogger.com/profile/11410503547692026880
https://lcamtuf.blogspot.com/2014/10/bash-bug-how-we-finally-cracked.html?showComment=1424577239329#c5162343933648639829
javascript:;
https://www.blogger.com/profile/07964553034419471588
https://lcamtuf.blogspot.com/2014/10/bash-bug-how-we-finally-cracked.html?showComment=1424582828904#c773357756009867499
https://www.blogger.com/profile/11410503547692026880
https://lcamtuf.blogspot.com/2014/10/bash-bug-how-we-finally-cracked.html?showComment=1424735080391#c8294397616940202077
javascript:;
https://www.blogger.com/profile/11410503547692026880
https://lcamtuf.blogspot.com/2014/10/bash-bug-how-we-finally-cracked.html?showComment=1424781635521#c3310038926539598114

