
  

CBC padding oracle attacks



  

Lab 2

● Will be assigned soon
● As much about the security mindset as it is a 

specific attack on crypto
– Be paranoid

– “Information only has meaning in that it is subject to 
interpretation”

– Program the “weird machine”

● You'll be attacking a real AES-CBC scheme
– Chosen ciphertext attack



  

CBC padding oracle attack 
examples

● Serge Vaudenay published the original attack in 
2002
– Applied to web frameworks like Ruby on Rails, 

ASP.NET, and JavaServer Faces

– https://www.iacr.org/cryptodb/archive/2002/EUROCRYP
T/2850/2850.pdf

● POODLE (published by Google in 2014) exploited 
SSLv3 that is still widely used by web servers and 
browsers
– https://security.googleblog.com/2014/10/this-poodle-bites

-exploiting-ssl-30.html

https://www.iacr.org/cryptodb/archive/2002/EUROCRYPT/2850/2850.pdf
https://www.iacr.org/cryptodb/archive/2002/EUROCRYPT/2850/2850.pdf
https://security.googleblog.com/2014/10/this-poodle-bites-exploiting-ssl-30.html
https://security.googleblog.com/2014/10/this-poodle-bites-exploiting-ssl-30.html


  

Review: AES is a Substitution 
Permutation Network and is symmetric

Source: Wikipedia



  

Alice and Bob have a shared secret 
key

Roscoe makes a 
copy of the 
ciphertext as it is 
transmitted from 
Alice to Bob.



  

Alice and Bob have a shared secret 
key

Roscoe re-plays modified copies of 
the encrypted message and learns 
information about the plaintext from 
Bob's behavior (e.g., Bob throws an 
exception for padding error)



  

PKCS#7 padding

● AES always encrypts in 128-bit blocks
– 128 bits == 16 bytes

● If you fill up blocks, that's great
– The last block might not be full

● Need an “unambiguous” way to pad the last block 
so the decrypting party knows the padding to throw 
out
– E.g., PKCS#7 (PKCS == Public Key Cryptography 

Standards)
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10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10



  

When last block is decrypted

● Check last byte of the last block, that's the 
number of bytes of padding
– Call it N

● There should be N N's on the end
– If not, throw a padding error

– If so, remove them, they're padding
● Might remove the whole last block if N = 16 (or 10 in hex)



  

By WhiteTimberwolf (SVG version) - PNG version, Public Domain, https://commons.wikimedia.org/w/index.php?curid=26434095



  

Requirements for attack

● Ability to modify ciphertexts and replay them
– Chosen ciphertext attack

● A padding oracle
– I.e., something that tells you whether the 

corresponding plaintext (for any ciphertext you 
send) has valid padding or not



  

Example plaintext (we don't know 
the plaintext yet before the attack)

H e l l o 20 W o r l d ! \n 03 03 03

Hints: In Lab 2 you can expect ASCII/UTF-8 English plaintext if you 
successfully decrypt.  You should also anticipate tabs, newlines, etc.



  

Example protocol for a client to send 
an encrypted message to a server

N u m b l k s : 1 K e y I D : A3

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

98 CC BE 01 FF 26 39 97 85 A1 02 1E BC A5 7E 98



  

Example protocol for a client to send 
an encrypted message to a server

N u m b l k s : 1 K e y I D : A3

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

98 CC BE 01 FF 26 39 97 85 A1 02 1E BC A5 7E 98

Number of blocks                              1 key per student 
        



  

Example protocol for a client to send 
an encrypted message to a server

N u m B l k s : 1 K e y I D : A3

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

98 CC BE 01 FF 26 39 97 85 A1 02 1E BC A5 7E 98

IV is randomly chosen but visible on the wire and known 
to you, won't be 0 like in this illustration



  

Example protocol for a client to send 
an encrypted message to a server

N u m B l k s : 1 K e y I D : A3

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

98 CC BE 01 FF 26 39 97 85 A1 02 1E BC A5 7E 98

Ciphertext is what you want to decrypt, you will recover 
the plaintext without needing to know the key!



  

Server response is visible to you

● “Message decrypted successfully”

                  ---or---
● “Padding error during decryption”



  

You can record a client message 
and replay it to the server

N u m b l k s : 1 K e y I D : A3

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

98 CC BE 01 FF 26 39 97 85 A1 02 1E BC A5 7E 98

Try every value of this byte from 00 to FF



  

By WhiteTimberwolf (SVG version) - PNG version, Public Domain, https://commons.wikimedia.org/w/index.php?curid=26434095



  

Suppose two values give valid 
padding

● 00 gives valid padding, this is just confirmation 
that the original plaintext has valid padding

● 02 also gives valid padding
– Can recover one byte of plaintext:

Q XOR 02 == 01, so... Q == 01 XOR 02 == 03

Q is the byte of plaintext we're trying to guess



  

WTF?

N u m b l k s : 1 K e y I D : A3

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 02

98 CC BE 01 FF 26 39 97 85 A1 02 1E BC A5 7E 98

H e l l o 20 W o r l d ! \n 03 03 01

“Information only has meaning in that it is 
subject to interpretation”



  

01 XOR 02 = 03

N u m b l k s : 1 K e y I D : A3

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01

98 CC BE 01 FF 26 39 97 85 A1 02 1E BC A5 7E 98

H e l l o 20 W o r l d ! \n 03 03 02

Now attack here



  

Discussion

● You still don't know the key, and probably never 
will

● It doesn't matter how secure AES is or the size of 
the key

● CBC is probably the most commonly used mode
● What if a byte is already what it needs to be?
● What if there is more than one block?
● What if there is a MAC?



  

References

● https://grymoire.wordpress.com/2014/12/05/cbc
-padding-oracle-attacks-simplified-key-
concepts-and-pitfalls/


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

