

CBC padding oracle attacks

Lab 2

● Will be assigned soon
● As much about the security mindset as it is a

specific attack on crypto
– Be paranoid

– “Information only has meaning in that it is subject to
interpretation”

– Program the “weird machine”

● You'll be attacking a real AES-CBC scheme
– Chosen ciphertext attack

CBC padding oracle attack
examples

● Serge Vaudenay published the original attack in
2002
– Applied to web frameworks like Ruby on Rails,

ASP.NET, and JavaServer Faces

– https://www.iacr.org/cryptodb/archive/2002/EUROCRYP
T/2850/2850.pdf

● POODLE (published by Google in 2014) exploited
SSLv3 that is still widely used by web servers and
browsers
– https://security.googleblog.com/2014/10/this-poodle-bites

-exploiting-ssl-30.html

https://www.iacr.org/cryptodb/archive/2002/EUROCRYPT/2850/2850.pdf
https://www.iacr.org/cryptodb/archive/2002/EUROCRYPT/2850/2850.pdf
https://security.googleblog.com/2014/10/this-poodle-bites-exploiting-ssl-30.html
https://security.googleblog.com/2014/10/this-poodle-bites-exploiting-ssl-30.html

Review: AES is a Substitution
Permutation Network and is symmetric

Source: Wikipedia

Alice and Bob have a shared secret
key

Roscoe makes a
copy of the
ciphertext as it is
transmitted from
Alice to Bob.

Alice and Bob have a shared secret
key

Roscoe re-plays modified copies of
the encrypted message and learns
information about the plaintext from
Bob's behavior (e.g., Bob throws an
exception for padding error)

PKCS#7 padding

● AES always encrypts in 128-bit blocks
– 128 bits == 16 bytes

● If you fill up blocks, that's great
– The last block might not be full

● Need an “unambiguous” way to pad the last block
so the decrypting party knows the padding to throw
out
– E.g., PKCS#7 (PKCS == Public Key Cryptography

Standards)

01

02 02

03 03 03

04 04 04 04

05 05 05 05 05

06 06 06 06 06 06

07 07 07 07 07 07 07

08 08 08 08 08 08 08 08

09 09 09 09 09 09 09 09 09

0A 0A 0A 0A 0A 0A 0A 0A 0A 0A

0B 0B 0B 0B 0B 0B 0B 0B 0B 0B 0B

0C 0C 0C 0C 0C 0C 0C 0C 0C 0C 0C 0C

0D 0D 0D 0D 0D 0D 0D 0D 0D 0D 0D 0D 0D

0E 0E 0E 0E 0E 0E 0E 0E 0E 0E 0E 0E 0E 0E

0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

When last block is decrypted

● Check last byte of the last block, that's the
number of bytes of padding
– Call it N

● There should be N N's on the end
– If not, throw a padding error

– If so, remove them, they're padding
● Might remove the whole last block if N = 16 (or 10 in hex)

By WhiteTimberwolf (SVG version) - PNG version, Public Domain, https://commons.wikimedia.org/w/index.php?curid=26434095

Requirements for attack

● Ability to modify ciphertexts and replay them
– Chosen ciphertext attack

● A padding oracle
– I.e., something that tells you whether the

corresponding plaintext (for any ciphertext you
send) has valid padding or not

Example plaintext (we don't know
the plaintext yet before the attack)

H e l l o 20 W o r l d ! \n 03 03 03

Hints: In Lab 2 you can expect ASCII/UTF-8 English plaintext if you
successfully decrypt. You should also anticipate tabs, newlines, etc.

Example protocol for a client to send
an encrypted message to a server

N u m b l k s : 1 K e y I D : A3

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

98 CC BE 01 FF 26 39 97 85 A1 02 1E BC A5 7E 98

Example protocol for a client to send
an encrypted message to a server

N u m b l k s : 1 K e y I D : A3

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

98 CC BE 01 FF 26 39 97 85 A1 02 1E BC A5 7E 98

Number of blocks 1 key per student

Example protocol for a client to send
an encrypted message to a server

N u m B l k s : 1 K e y I D : A3

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

98 CC BE 01 FF 26 39 97 85 A1 02 1E BC A5 7E 98

IV is randomly chosen but visible on the wire and known
to you, won't be 0 like in this illustration

Example protocol for a client to send
an encrypted message to a server

N u m B l k s : 1 K e y I D : A3

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

98 CC BE 01 FF 26 39 97 85 A1 02 1E BC A5 7E 98

Ciphertext is what you want to decrypt, you will recover
the plaintext without needing to know the key!

Server response is visible to you

● “Message decrypted successfully”

 ---or---
● “Padding error during decryption”

You can record a client message
and replay it to the server

N u m b l k s : 1 K e y I D : A3

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

98 CC BE 01 FF 26 39 97 85 A1 02 1E BC A5 7E 98

Try every value of this byte from 00 to FF

By WhiteTimberwolf (SVG version) - PNG version, Public Domain, https://commons.wikimedia.org/w/index.php?curid=26434095

Suppose two values give valid
padding

● 00 gives valid padding, this is just confirmation
that the original plaintext has valid padding

● 02 also gives valid padding
– Can recover one byte of plaintext:

Q XOR 02 == 01, so... Q == 01 XOR 02 == 03

Q is the byte of plaintext we're trying to guess

WTF?

N u m b l k s : 1 K e y I D : A3

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 02

98 CC BE 01 FF 26 39 97 85 A1 02 1E BC A5 7E 98

H e l l o 20 W o r l d ! \n 03 03 01

“Information only has meaning in that it is
subject to interpretation”

01 XOR 02 = 03

N u m b l k s : 1 K e y I D : A3

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01

98 CC BE 01 FF 26 39 97 85 A1 02 1E BC A5 7E 98

H e l l o 20 W o r l d ! \n 03 03 02

Now attack here

Discussion

● You still don't know the key, and probably never
will

● It doesn't matter how secure AES is or the size of
the key

● CBC is probably the most commonly used mode
● What if a byte is already what it needs to be?
● What if there is more than one block?
● What if there is a MAC?

References

● https://grymoire.wordpress.com/2014/12/05/cbc
-padding-oracle-attacks-simplified-key-
concepts-and-pitfalls/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

