
Cellular Automaton–Based Emulation of 
the Mersenne Twister

Kamalika Bhattacharjee*

Nitin More

Shobhit Kumar Singh
Nikhil Verma

Department of Computer Science and Engineering
National Institute of Technology
Tiruchirappalli, Tamilnadu – 620015, India
*corresponding  author, kamalika.it@gmail.com 

{Nitinmore6990, sks.shobhit12, nikhilverma793}@gmail.com 

The  Mersenne  Twister  (MT)  (MT19937),  developed  30  years  ago,  is
the  de  facto  pseudorandom  number  generator  (PRNG)  used  in  many
computer  programs.  This  paper  proposes  a  candidate  that  offers  a
randomness  quality  that  is  better  than  MT19937  and  its  sisters
SFMT19937  and  TinyMT.  A  special  three-neighborhood,  two-state

cellular  automaton  (CA),  called  CA  (150′)  is  the  underlying  model  of
this PRNG. The same working style of MT19937 is used, while avoid-
ing the problems of the MT, like a large state space and the zero-access
initial state problem. Nonlinearity is added in the base simple linear CA
such  that  the  properties  of  the  base  CA  are  not  violated.  Finally,  a
PRNG  is  developed  using  this  CA  that  beats  MT19937  as  well  as  its
advanced  versions  over  the  standard  empirical  platforms  Dieharder,
TestU01 and NIST. 
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Introduction1.

Pseudorandom number generators (PRNGs) are inherently essential in
modern computing paradigms including stochastic computing, Monte
Carlo  simulations,  testing  and  randomized  algorithms.  Since  its  pro-
posal  by  Makoto  Matsumoto  and  Takuji  Nishimura  in  1997  [1],  the
Mersenne Twister (MT) has become the de facto PRNG in many soft-
ware  and  language  implementations,  like  Maple,  Python,  PHP,  GLib,
MATLAB  and  the  GCC  compiler.  The  reason  is  that  it  has  a  huge
state  space—the  most  popular  version  (MT19937)  has  19937  bits  of
state—due  to  which,  the  period  is  very  large  (the  sequence  will  not
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repeat  before  219937 - 1  numbers  for  MT19937).  Also,  the  perfor-
mance  of  the  MT  and  its  sister  PRNGs,  like  the  SIMD-oriented  fast
Mersenne  twister  (SFMT)  [2],  is  very  good  on  empirical  testbeds  [3],
which  makes  them  attractive  choices  for  ease  of  implementation  in
software.

However, the MT family has some serious drawbacks. First, it com-
putes  and  stores  a  huge  state  even  though  only  a  few  numbers  are
required;  for  example,  in  the  case  of  MT19937,  623  32-bit  numbers
are  generated  and  stored  every  time.  Second,  it  suffers  from  the  zero-
excess initial state problem where, if a large number of bits in the ini-
tial  state  are  0,  nonchaotic  patterns  may  be  generated,  making  the
sequence  nonrandom.  Third  and  most  important,  due  to  its  linearity,
the  MT  as  well  as  its  sisters  SFMT  and  tiny  Mersenne  twister
(TinyMT)  [4]  fails  several  important  statistical  tests,  such  as
Marsaglia’s  linear-complexity  test,  the  binary-rank  test  [5]  and
BigCrush of the TestU01 library [6]. 

We propose a new PRNG that works in the same way as the MT,
but  uses  a  much  smaller  state  space,  while  giving  better  performance
than  the  MT  family  in  all  empirical  tests.  Also,  it  is  fast  enough  and
easy  to  implement  for  general  usage.  Our  PRNG  is  based  on  cellular
automata  (CAs),  which  have  long  been  established  as  an  effective
choice  for  a  source  of  randomness  [7].  More  specifically,  we  exploit
the  properties  of  a  special  two-state  three-neighborhood  cellular

automaton  (CA),  called  CA  (150′),  introduced  in  [8].  This  CA,
defined over a null boundary, takes rule 150 for every cell except the
first cell, which uses rule 90 and has the potential to generate a maxi-
mal cycle length of 2n - 1 if the size of the CA n is a Sophie Germain
prime.  To  improve  the  inherent  randomness  quality  of  the  CA,  we
also  use  the  Temper  and  Twist  functions,  similar  to  MT19937.  An
initial  version  of  this  work  is  reported  in  [9].  This  paper  reports  an
extension of that work that further improves the proposed PRNG and
establishes  itself  as  the  best  random  number  generator,  beating  the
MT family in all the standard empirical testbeds: Dieharder, BigCrush
and NIST [10]. 

The paper is organized as follows: Section 2 briefly states the back-
ground  required  to  understand  the  underlying  concepts.  In  the  next
three sections, we gradually develop our PRNG and improve it based
on its performance in testbeds. Section 3 recollects the basic prototype

of the PRNG based on CA (150′). We choose 1409 as the CA size so
that  it  generates  44  32-bit  numbers  at  a  time,  just  like  the  MTs,  but
takes only 1409 bits as its state, making it lightweight. A proper seed
is  selected  to  prevent  the  zero-excess  initial  state  problem.  Then  we
apply  tempering  and  test  our  PRNG  over  the  statistical  testbeds.  We
can  see  that  our  PRNG  fails  the  rank  test  of  Dieharder,  the  Matrix
Rank  test  of  BigCrush  and  the  LinearComp  test  of  BigCrush.  So  to
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further enhance its randomness, in Section 4 we add a nonlinear com-
ponent to the PRNG. Two approaches are taken, Twist of MT19937
as  well  as  XOR  +  multiplication.  Now  the  PRNG  passes  all  tests  of
Dieharder,  but  the  linearity  tests  of  BigCrush  can  still  detect  nonran-
domness  in  the  PRNG.  Hence,  in  Section  5  we  use  a  different  tech-
nique.  Instead  of  adding  a  nonlinear  component  outside  the  CA,
which  makes  the  PRNG  slow,  we  switch  to  nonlinear  CAs.  This  sec-
tion  identifies  an  appropriate  nonlinear  CA  that  satisfies  our  criteria
and develops our final PRNG. We show that this PRNG performs bet-
ter  than  all  of  its  competitors,  MT19937  and  SFMT19937,  passing
almost all existing empirical tests. 

Background2.

Here, a brief overview of the MT, different testbeds used in this paper

and CAs, especially CA (150′), is given.

The Mersenne Twister2.1

The  MT,  a  well-known  general-purpose  PRNG,  is  derived  from  a
twisted  generalized  feedback  shift  register  (TGFSR)  such  that  its

period  is  a  Mersenne  prime  219937 - 1.  This  PRNG  can  generate  a
sequence of numbers very quickly by avoiding multiplication and divi-
sion and efficiently utilizing memory and cache.

Algorithm2.1.1

The MT works in the following way (see Figure 1): first, a 32-bit inte-
ger,  considered  as  the  seed,  is  employed  to  initiate  the  state  of  the
TGFSR, which is 19 937 bits. This is done by consecutively filling the
next 624 words of the initial state array using some XOR, shift, addi-
tion and multiplication with a constant over the previous word in the
array (the first word being the seed). Observe that 32624  19 936.
Then  the  Twist  function  is  applied  to  produce  the  next  state  of  the
PRNG.  However,  instead  of  directly  generating  each  state  as  output,
the internal states are divided into 624 32-bit words (integers) and the
Temper  function  is  applied  over  each  integer  before  producing  it  as
output.  The  Twist  function  is  used  again  to  update  the  next  state  of
the TGFSR but only when all 624 numbers are exhausted. 

Tempering is defined by the following transformations applied suc-
cessively: 

y  x⊕ (x ≫ u) (1)

y  y⊕ ((y ≪ s) AND b) (2)
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y  y⊕ ((y ≪ t) AND c) (3)

z  y⊕ (y ≫ l) (4)

where  the  integers t, u, l, s  are  tempering  parameters, c  and b  are
bitmasks of the word size of the computer, x is the next number gener-
ated in the series and z is the vector returned. Observe that all opera-
tions  are  bitwise  XORs,  ANDs,  ORs  and  shifts.  Table 1  depicts  the

Figure 1. Working principle of the MT.

Value

Parameter 32-bit        64-bit

n 624 312

w 32 64

r 31 31

m 397 156

a 0x9908B0DF 0xB5026F5AA96619E916

u 11 29

s 7 17

t 15 37

l 18 43

b 0x9D2C5680 0x71D67FFFEDA6000016

c 0xEFC60000 0xFFF7EEE00000000016

Table 1. MT19937 32-bit and 64-bit parameters. 
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32-bit  and  64-bit  parameters  used  for  MT19937.  These  parameters
are  selected  in  such  a  way  that  the  period  is  the  Mersenne  prime

219937 - 1, longest among all its predecessors, which is one of the rea-

sons for the popularity of the MT. Further, for every 1 ≤ k ≤ 623, the

MT is k-distributed to 32-bit accuracy. However, the MT is not cryp-
tographically  secure  because  the  Twist  function  is  not  a  one-way
function.

Limitation and Improvement2.1.2

The  MT  has  a  serious  limitation  in  initialization,  known  as  the  zero-
access  initial  state  problem.  If  the  number  of  zeros  in  the  initial  state
is sufficiently high, then, for more than 10 000 generations, the gener-
ated  sequence  may  continue  to  have  many  zeros,  resulting  in  corre-
lated  output  sequences.  Furthermore,  due  to  its  large  state  space  of
19 937  bits  and  linearity,  the  next  state  of  the  MT  is  easy  to  predict
from the previous states, which makes it unsuitable for cryptographic
purposes. New variants are proposed to avoid these limitations:  

SFMT.  Single  instruction,  multiple  data  (SIMD)-oriented  fast  MT
(SFMT)  uses  SIMD  (like  128-bit  integer)  operations  and  multistage
pipelines along with all properties of the MT. It generates both 32-bit
and  64-bit  unsigned  integer  numbers,  plus  double-precision  floating-
point  numbers.  It  is  almost  two  times  faster  than  the  MT  and  has  an
improved  equidistribution  property  and  a  quicker  recovery  from  the
zero-excess  initial  state  problem  than  the  MT.  Here  we  use
SFMT19937, which has the same period length as MT19937. 

TinyMT. TinyMT is introduced to operate over a small state space

of  127  bits,  resulting  in  a  shorter  period  of  2127 - 1.  Still,  it  passes
many  noncryptographic  statistical  tests.  Here  we  use  TinyMT32,
which has to be initialized with the following set of parameters: 

mat1  0x8f7011ee  2 406486 510

mat2  0xfc78ff1f  4 235788 063

tmat  0x3793fdff  932 445695.

Testbed  2.2

This paper uses three standard batteries of empirical tests: Dieharder,
NIST  statistical  test  suite  and  BigCrush  of  the  TestU01  library.  Next
we briefly discuss them.  

Dieharder  2.2.1

The  Diehard  tests  [11]  are  a  battery  of  statistical  tests  developed  by
George  Marsaglia  in  1995  for  measuring  the  quality  of  a  PRNG.
Later,  an  extended  version  called  Dieharder  that  contains  114  tests
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was  developed  [5].  Similar  to  the  Diehard  tests,  the  Dieharder  tests
also  return  p-values  that  indicate  the  performance  of  a  PRNG  in  the

test.

TestU01  2.2.2

TestU01  is  an  ANSI  C  language  software  library  that  provides  a  col-
lection  of  utilities  for  statistically  testing  the  randomness  of  PRNGs
[6]. Both classical statistical tests for PRNGs as well as many original
tests  are  implemented  as  part  of  the  library.  These  tests  can  be  used
over  streams  of  random  numbers  stored  in  files  as  well  as  any  user-
defined generators and the predefined generators in the library. If the
corresponding  p  values  are  within  0.001  to  0.999,  the  PRNG  passes

the  test.  We  have  considered  the  most  stringent  battery  of  tests—the
“Big Crush,” containing 160 tests.  

NIST  2.2.3

The  NIST  statistical  test  suite  [10]  is  comprised  of  15  tests  generated
to test cryptographic properties of PRNGs. The reference distribution

is considered as the standard normal and the chi-square (χ2) for many

of these tests. For a sample size α, the range of acceptable proportions
for x is calculated as  

(1 - α) ± 3
α(1 - α)

m

where α  0.01 and x is the minimum pass rate.  

Cellular Automata  2.3

We  consider  three-neighborhood,  two-state  n-cell  CAs  under  the  null
boundary  condition  where  each  cell  of  the  CA  can  take  a  different
rule, that is, the CA is nonuniform. Such a CA can be represented by
a  rule  vector  ℛ  〈R0, R1, …, Rn-1〉,  which  indicates,  for  each  i,

0 ≤ i ≤ n - 1,  the  ith  cell  takes  rule  Ri  to  update  its  next  state.  For
example, consider two rules: 

rule 90 :R90(x, y, z)  x⊕ z

rule 150 :R150(x, y, z)  x⊕ y⊕ z

where x, y, z ∈ {0, 1} represents the states of the left neighbor, the cell

under  consideration  and  the  right  neighbor,  respectively.  These  are
linear rules.  

Definition 1. A  rule  Ri : {0, 1}
3  {0, 1}  is  called  linear  if

Ri(x, y, z)  c0x⊕ c1y⊕ c2z, where ci ∈ {0, 1} is a constant; otherwise

it is a nonlinear rule.
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Definition 2. A  rule  Ri : {0, 1}
3  {0, 1}  is  complemented  if

(x, y, z)  1 -Ri(x, y, z), where rule Ri is a linear rule. 

There  are  eight  linear  rules—0,  60,  90,  102,  150,  170,  204  and
240,  and  eight  complemented  rules—15,  51,  85,  105,  153,  165,  195
and  255.  A  CA  that  uses  these  16  rules  can  be  efficiently  character-
ized  by  algebraic  tools.  We  call  a  rule  nonlinear  if  it  is  neither  linear
nor complemented. 

Definition 3. If  a  rule  vector  ℛ  contains  only  linear  rules,  then  the  CA
is  called  linear.  If  at  least  one  rule  is  complemented  and  the  rest  are
linear,  then  the  CA  is  a  complemented  CA.  Otherwise,  (i.e.,  at  least
one rule of ℛ is nonlinear) the CA is a nonlinear CA. 

The snapshot of all cells at any time instant is called the configura-
tion  of  the  CA.  A  CA  evolves  through  its  configuration  space
Cn  {0, 1}n by its global transition function Gn, where Gn :Cn  Cn. 

Definition 4. A CA is reversible if for each of its configurations x ∈ Cn,
x  Gn

t (x) for some t ∈ . 

Definition 5. A  rule  is  balanced  if  its  eight-bit  binary  representation
contains an equal number of zeros and ones. 

Out of 256 rules, only 70 rules are balanced. Under the null bound-
ary  condition,  however,  only  62  balanced  rules  can  participate  in
forming  a  reversible  CA.  Some  reversible  CAs  can  be  of  maximal
length.  An  n-cell  CA  is  called  a  maximal-length  CA  if  all  except  one
of  the  configurations  form  a  single  cycle  of  length  2n - 1.  Only
rules 90 and 150 can form a nonuniform linear maximal-length CA. 

Theorem 1. A  linear  CA  is  of  maximal  length  if  and  only  if  the  rule
vector  of  the  CA  consists  of  rules  90  and  150,  and  its  characteristic
polynomial is primitive over GF(2) [8]. 

However,  any  arbitrary  sequence  of  rules  90  and  150  does  not
form a maximal-length CA. In this paper, we are interested in one spe-
cial CA formed with these two rules that has the potential to become
a maximal-length CA. 

Definition 6. An  n-cell  rule  vector  ℛ  〈R0, R1, …, Rn-1〉  is  called  a

CA (150′) if R0  90 and Ri  150, where 1 ≤ i ≤ n - 1 [8]. 

This  CA  was  introduced  by  Adak  and  Das  in  [8],  who  describe
three  greedy  strategies  for  finding  primitive  polynomials  of  a  large
degree over GF(2). Some greedy strategies are reported that synthesize
(linear)  CAs,  which  are  almost  always  maximal-length  CAs,  that  is,
with a primitive characteristic polynomial. The paper reports a list of

CA sizes for which CA (150′) is a maximal-length CA (reproduced as
Table 2). Here, * marks false positives. 
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2
3

5
9

1
1

1
4

2
3

2
6

2
9

3
5

3
9

4
1

5
0
*

5
3

6
5

6
9

7
4

8
1

8
3

8
6

8
9

9
5

9
8
*

9
9
*

1
0
5

1
1
3

1
1
9

1
3
1

1
3
4
*

1
4
6

1
5
5

1
5
8

1
7
3

1
7
9

1
8
9

1
9
1

1
9
4
*

2
0
9

2
2
1

2
3
0

2
3
1

2
3
3

2
3
9

2
4
3

2
5
1

2
5
4

2
7
8
*

2
8
1

2
9
3

2
9
9

3
0
3

3
2
3

3
2
6

3
2
9

3
3
8
*

3
5
0
*

3
5
9

3
7
1

3
7
5

3
8
6

3
9
8

4
1
0
*

4
1
1

4
1
3

4
1
9

4
2
9

4
3
1

4
4
3

4
5
3

4
7
0

4
7
3

4
9
1

5
0
9

5
1
5

5
1
9

5
3
0

5
3
1

5
4
3

5
5
4

5
6
1

5
7
5

5
9
3

6
1
4
*

6
1
5

6
2
9

6
3
8

6
3
9

6
4
1

6
4
5
*

6
5
0
*

6
5
3

6
5
9

6
8
3

6
8
6
*

7
1
3

7
1
9

7
2
3

7
2
5

7
4
1
*

7
4
3

7
4
6

7
4
9

7
6
1

7
7
9

7
8
3
*

7
8
5

8
0
3
*

8
0
9

8
1
8

8
3
1

8
3
3

8
6
6

8
7
3

8
9
3

9
1
1

9
2
3

9
5
0
*

9
5
3

9
6
5

9
7
4
*

9
7
5

9
8
6
*

9
8
9

9
9
3

9
9
8

1
0
1
3

1
0
1
9

1
0
3
1

1
0
3
4
*

1
0
4
1

1
0
4
3

1
0
4
9

1
0
7
0

1
1
0
3

1
1
0
6
*

1
1
1
8

1
1
1
9

1
1
2
1

1
1
3
3

1
1
5
4

1
1
5
5

1
1
6
6

1
1
6
9

1
1
7
8
*

1
1
8
5

Table 2. Value  of n  such  that  the n-cell  CA (150′)  is  of  maximal  length  [8].
Here, * marks false positives. 

Note  that  the  presence  of  rule  90  in  this  CA  in  its  first  cell  with
rule 150 over all other cells helps it to achieve maximality for some n.
The following conjecture gives an idea of such n [8]: 

Conjecture 1.  Characteristic  polynomials  of  CA  (150′)  of  size  n  are
primitive  over  GF(2)  if  n  and  2n + 1  are  both  primes  (i.e.,  n  is  a
Sophie Germain prime) [8]. 
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Table  2  validates  this  conjecture.  Here,  we  can  see  that,  if  n  is  a
Sophie  Germain  prime,  that  is,  both  n  and  2n + 1  are  primes,  then

CA (150′)  of  size  n  has  the  maximal-length  property.  There  are  42

Sophie  Germain  primes  up  to  1200  and  for  all  of  them,  CA (150′)

shows maximality. Hence, for our work, we take an n-cell CA (150′)
where n is a Sophie Germain prime. 

Phase I: Making Our Own Pseudorandom Number Generator3.

As discussed, the number of cells n of our CA for developing PRNG is
chosen  to  be  a  Sophie  Germain  prime.  Hereafter,  we  consider  only
those n where n is a Sophie Germain prime. So our task is to finalize
the specific Sophie Germain prime suitable for our purpose.  

Selection of Proper n3.1

Before  selecting  n,  the  maximality  claim  needs  to  be  verified  because
there  are  some  false  positives  in  Table  2.  We  can  evolve  the  CA  and
check  if  there  is  actually  a  cycle  of  length  2n - 1.  However,  if  n  is
large, it is practically infeasible to run the CA up to 2n configurations.

In  this  situation,  the  following  property  of  CA  (150′)  can  reduce  the
search space:  

Property 1. The  CA  (150′)  with  size  n  is  reversible  for  any  n  except
n ∈ 3 + 1 [8].

Therefore,  if  n  is  selected  as  a  Sophie  Germain  prime  such  that
n ∉ 3 + 1,  then  the  initial  configuration  will  eventually  repeat,  and
all  configurations  are  part  of  some  cycles.  Using  this  information,  we
develop the following strategy to test maximality: 

CA  (150′)  with  size  n  where  n  is  a  Sophie  Germain  prime  and
n ∉ 3 + 1 is declared as a maximal-length CA if either the com-
plete  cycle  length  test  was  possible  or  the  initial  configuration

has not returned even after 109  steps, that is, the cycle length is

larger than 109. 

Therefore, our maximality testing method is: 

Take an n where n is a Sophie Germain prime and n ∉ 3 + 1. 1.

For  that  n,  check  if  CA  (150′)  has  configuration  000⋯00  as  a  single-
length  cycle  (this  configuration  repeats  itself).  If  the  CA  is  a  maximal-
length CA, all other configurations must be in the same cycle. 

2.

Take any other configuration as the seed and run CA (150′) on it until
the  seed  is  obtained  as  the  next  configuration.  If  the  seed  is  obtained

again after exactly 2n - 1 steps, the CA is a maximal length for size n. 

3.
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For  large  n,  check  if  the  seed  is  repeated  within  109  steps.  If  not,
declare the CA as a (possible) maximal-length CA. 

4.

Table  3  shows  the  results  for  3 ≤ n ≤ 36  where  the  seed  is

00⋯001.  The  bold  rows  indicate  the  sizes  n  where  CA  (150′)  is  a
maximal-length CA. In the case n ∈ 3 + 1, the CA is irreversible and
not  tested.  We  can  observe  that  for  all  Sophie  Germain  primes  up  to

36,  CA  (150′)  is  a  maximal-length  CA.  We  also  test  this  scheme  on
arbitrary large values of Sophie Germain primes (up to 2000) and see

that for all those n, the period length of the CA is greater than 109. 

n
Number of 
Configurations 

Observed 

Cycle n
Number of 
Configurations

Observed 

Cycle

3  8 7 20 1048576 1023

4 16 21 2097152 127

 5 32 31 22 4194304

6 64 21 23 8388608 8388607

7 128 24 16777216 2097151

8 256 15 25 33554432

 9 512 511 26 67108864 67108863

10 1024 27 134217728 1048575

 11 2048 2047 28 268435456

12 4096 1023 29 536870912 536870911

13 8192 30 1073741824 17043521

14 16384 16383 31 2147483648

15 32768 31 32 4294967296 63

16 65536 33 8589934592 1227133513

17 131072 4095 34 17179869184

18 262144 29127 35 34359738368 34359738367

19 524288 36 68719476736 511

Table 3. Observed cycle lengths of CA (150′). 

Now,  since  the  size  of  the  state  in  MT19937  takes  the  form  of
32x + 1,  we  finalize  our  CA  size  with  a  similar  n.  The  benefit  is,  at
any  given  time,  x  number  of  32-bit  outputs  will  be  ready  from  a  sin-
gle  configuration,  with  only  one  unused  bit.  However,  to  make  the
size  of  each  configuration  not  too  large,  while  keeping  the  cycle
length  not  too  small,  we  select  n  1409  for  the  PRNG,  a  Sophie
Germain  prime  of  the  form  32x + 1.  Here,  every  single  configura-
tion produces 44 32-bit random numbers. 
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Need of Temper Function  3.2

However,  the  presence  of  rules  90  and  150  in  the  CA  always  creates
equilateral  triangles  in  its  spacetime  diagram.  See  Figure  2  for  an
example  with  n  353.  If  we  extract  numbers  containing  these  pat-
terns,  they  will  be  correlated  and  not  random.  To  remove  these
patterns  from  our  PRNG,  we  use  the  tempering  technique  that  has
been utilized by the MT family. In fact, the same tempering functions
used  by  MT19937  are  used  in  this  paper  to  make  the  comparison
between their performance on a similar platform (see equations (1) to
(4)). Here x is the 32-bit number generated by the consecutive 32 bits
from the CA configuration with the remaining coefficients: 

(u, d) = (11, 0xFFFFFFFF16)

(s, b) = (7, 0x9D2C568016)

(t, c) = (15, 0xEFC6000016)

l = 18.

Figure 2. Spacetime diagram for CA (150′) with n  353.  
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Figure  3  shows  a  sample  spacetime  diagram  for  CA  (150′)  with
n  353 that can generate 11 32-bit numbers from one configuration
(the  binary  representation  of  these  numbers  is  concatenated  in  Fig-
ure 3 to compare with Figure 2). It can clearly be seen that tempering
eliminates  the  equilateral  triangles  and  patterns,  significantly  improv-
ing the randomness quality of the produced numbers. 

Figure 3. Spacetime  diagram  for  tempered  numbers  generated  using

CA (150′) with n  353.  

Finding the Best Seed  3.3

The  first  characteristic  of  a  PRNG  is  that  its  sequence  can  be  repro-
duced  by  using  the  same  seed.  Hence,  the  choice  of  a  good  random
seed is crucial. We take the following steps to obtain the best-perform-
ing seed for our PRNG:  
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Generate  1000  random  seeds  using  rand,  where  each  seed  has  an
equal distribution of zeros and ones for every 32 bits. This is to remove
any  bias  of  zeros  and  ones.  A  seed  with  an  equal  distribution  of  zeros
and  ones  increases  the  probability  of  an  equal  distribution  throughout
the cycle. 

1.

For  each  seed,  generate  a  12MB  binary  file  using  the  32-bit  outputs  of
the PRNG. 

2.

Test the binary file on the Dieharder [5] test suite. 3.

Since Dieharder works on large file sizes, a small file size of 12MB will
obviously  result  in  many  failed  tests.  However,  if  the  seed  fails  more
than six tests, testing stops. 

4.

Out  of  all  the  seeds,  those  passing  more  than  40  tests  before  stopping
are considered. 

5.

After complete analysis, seed numbers 187 and 367 are found to be
the  best-performing  seeds.  These  seeds  are  shown  in  Table  4.  In  the
following section, we consider results of only these two seeds. 

Seed Number 187
10100111111000110100100110100110001010111111100110001000011
10100000101101100010010100111010001111100010001100011110101
11111000001100111010011100010011000011110011000000011110101
10010011100111010001101110101111010100010101010011110010011
01010110001110010100000100100111101000010110110101101010101
10001100111010011000110101101010000101111111100100101001001
11101001101000000011011001110101100111110110000001001110010
00110011001111010101101000010011011001001110110000111010110
00010110110001101001001111000101010110101010011101100001110
10110000101101111100101100111101010000001110001111001100001
01001000100100111110011110010101011010100111001100000011110
01010011101101110100100001010011001010100100111111100100010
10011101111110001000010010101001101000010010101101111010101
10010111000110100100011011010100110100001010011101001111010
01111000011011110010100000101010101011111011100100110111011
10000100001001010101011010001010101011010011100010001100011
11010111111000001101011011100110011010100101000101000100000
11010111110110100101010111011011011100101000110000101000010
01101011010001101011101110011110010101000111110010010001001
10110011110000011101010001110010110000110101000100101101111
01100101111010110100101000100101000110011001110010111000110
01101000111011111001010011101010001000100100010001111111010
00100101000111110111010101110011000010101100010001001111110
1001010110011101000010101101001001101010100011001011

Table 4. (continues)
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Seed Number 367
10001110001111011001000111010101000001001010011110011001101
00111110111001100110110000100011110001101011100111101001000
01010101010011011011101001111000010000110100101110100101100
10010001101010111110110001101111110001000010001000000100110
01110111101110011000111010011001011010000100010110111101001
00101010110101101011001010000011001110100101111000101101100
10011100000010101010011111001111100000001011101001010010111
10111001111110100111100110101000000001111010001000100101111
00010111010100010010011011000011011110011001111001101010110
00001100110110100101011100011011010100101011000101111010100
00010010001111101011010000011110001111101010000011100010110
11000110010110100111001111010100000111010111001000110110100
10110001110000111001111000101101110011010001100110100010101
10110010011011000010111001011001010111011010100010011111000
00101010001100100011111001010010111011001011100011100101010
01001100011100001101011000110000011111010111010011010000100
00011011111110101101001100010100010111011100100110110100011
00100011010001001111110001011100101110010100100101011110100
00100111110110101110001000110010100011001111110101011100000
00011011100001010111111100100100100001010111011010111110100
10000101010001100011001111011001011000110000101111011110000
11011000010011111001001000011110100101100100011000011010111
11100011000111001011100011010010001101101010011010111011001
1111010101000001100011000100000001000111101111110011

Table 4. Seed numbers 187 and 367 selected for our PRNG. 

Results and Comparison with Mersenne Twister  3.4

We  test  our  generator  using  Dieharder  and  BigCrush  of  the  TestU01
test  suites.  As  already  mentioned,  the  Dieharder  test  suite  contains
114  tests,  whereas  BigCrush  of  TestU01  contains  the  106  most  strin-
gent  tests.  For  comparison,  we  consider  MT19937,  SFMT19937  and
TinyMT for 32 bits with their default seeds. The results are discussed
in the following.  

Dieharder  3.4.1

The desirable file size for a Dieharder test is usually more than 10GB.
However,  for  testing  our  PRNG  (on  seed  numbers  187  and  367)  and
to  get  a  meaningful  comparison,  we  use  two  file  sizes  of  1.2GB  and
12GB. We can observe in Table 5 that, for all the generators, not even
a  single  test  fails  on  Dieharder  over  12GB  file  size;  hence,  we  use  a
smaller  file  size  to  compare  the  performance.  It  can  be  noticed  that
for this smaller file size of 1.2GB, our PRNG outperforms all its com-
petitors  for  both  the  seeds.  Since  seed  number  367  performs  better
between these two seeds, we choose it as our default seed to perform
the remaining tests.  
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 CA (150′)+tempering Competitors     

Seed 187 Seed 367 MT19937 TinyMT SFMT19937  

File Size Weak Failed Weak Failed Weak Failed Weak Failed Weak Failed

1.2GB 7 2 6 1 5 3 5 2 7 5

12GB 4 0 2 0 2 0 3 0 2 0

Table 5. Comparison using Dieharder. 

BigCrush of the TestU01 Library  3.4.2

Table  6  reports  on  the  tests  that  failed  on  the  BigCrush  of  TestU01
library  for  our  PRNG  (with  default  seed  367)  and  its  competitors.
Here,  for  each  of  the  failed  tests,  the  p-value  is  either  eps,  meaning  a

value  < e-300,  or  1-eps1,  which  means  a  value  < e-15.  Over
BigCrush,  our  PRNG  performs  more  poorly  than  MT19937,
SFMT19937  failing  four  out  of  106  tests,  whereas  these  variants  of
the  MT  fail  on  only  two  tests.  These  four  tests  are  basically  the
Matrix Rank and LinearComp tests [6], which detect elements of lin-
earity  in  the  generated  sequence.  Therefore,  the  failure  of  our  PRNG
on  these  two  tests  may  be  due  to  its  inherent  linearity.  To  address
this,  we  add  nonlinearity  in  our  generator  to  further  improve  its  ran-
domness quality. 
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Table 6. Comparison  using  BigCrush  of  TestU01.  Here,  only  failed  tests  are
shown. 
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Phase II: Improving Our Pseudorandom Number Generator by 

Nonlinearity   

4.

Empirical data from the previous section suggests that our PRNG has
an  element  of  linearity,  which  makes  the  sequence  less  random  and
more  susceptible  to  attack.  This  section  explores  some  techniques  to
add  a  nonlinear  module  to  our  generator  and  compare  the  perfor-
mances. We take two main approaches:

Using  procedure  Twist  of  MT19937.  There  are  two  ways  to  incorpo-
rate this into our generator:

1.

Twist on output.(a)

Twist on CA configuration. (b)

Using  a  basic  nonlinear  component,  such  as  XOR  followed  by  Multi-
ply, performed after Twist on the output. 

2.

Using Twist  4.1

MT19937  uses  Twist  as  the  function  to  generate  the  next  state  of  its
623-word state. Even though Twist produces the 623-word state in a
single  iteration,  it  does  so  by  manipulating  the  individual  words  one
at a time. We exploit this fact to design our two approaches to incor-
porate Twist in our generator:

◼ On  output.  Instead  of  directly  generating  output  after  applying
Temper,  we  apply  Temper  followed  by  Twist  to  generate  the  output
(see Figure 4(a)). 

◼ On  CA  configuration.  This  is  similar  in  principle  to  what  MT19937
does. We first generate the next configuration of the CA and then apply
Twist  to  generate  the  final  form  of  the  PRNG  state.  Then  we  apply
Temper to extract individual numbers (see Figure 4(b)). 

The  generated  PRNGs  are  once  again  tested  using  the  default  seed
367. Table 7 depicts the results, showing that our generator with Tem-
per+Twist  on  Output  passes  all  Dieharder  tests,  beating  the  others  at
both input sizes 1.2GB and 12GB. However, there is no improvement
for  these  generators  in  the  BigCrush  test  results.  Therefore,  the  Twist
function  is  not  sufficient  to  remove  the  element  of  linearity  from  our
PRNG. Next, we explore another method to add nonlinearity. 
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(a) Twist on output (b) Twist on

configuration

(c) Using XOR

+ Multiply

Figure 4. Applying nonlinearity to our PRNG.       
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Table 7. Results  after  applying  Twist  on  Diehard  and  BigCrush  of  the
TestU01 library. 

XOR + Multiply  4.2

To add nonlinearity in this approach, XOR followed by the multipli-
cation operation on the output with numbers close to Sophie Germain
primes is used over numbers generated via the Temper+Twist on Out-
put method. Figure 4(c) shows the flowchart.  

However,  unfortunately,  there  is  also  no  improvement  in  perfor-
mance  in  BigCrush.  The  same  tests  fail  again  (likewise  Table  7).  At
this point, our PRNG has become much slower by getting overloaded
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with costly operations like multiplications along with Twist and Tem-
per.  Hence,  we  choose  not  to  use  this  approach.  In  fact,  we  propose

to  select  Temper+Twist  on  Output  on  CA  (150′)  (Figure  4(a))  with
seed 367 as the default seed as our PRNG for applications where non-
randomness  due  to  linearity  can  be  ignored.  As  per  Conjecture  2  of

[8],  this  PRNG  has  a  period  length  of  21409 - 1  and  it  passes  all
Dieharder tests. 

Nevertheless,  our  generator  still  cannot  pass  the  Matrix  Rank  and
LinearComp  tests  of  BigCrush.  Further  addition  of  any  nonlinear
module to the generator is impractical as it hampers the efficiency and
speed. Therefore, we employ a totally different approach. As the root
cause of the problem may be the linearity of the CA rules, in the next
section we proceed to use a nonlinear CA. 

Phase III: Search for a Nonlinear Maximal-Length 

Cellular Automaton   

5.

Until  now,  we  have  used  a  linear  CA  (recall  that  CA  (150′)  contains
only  rules  90  and  150,  both  of  which  are  linear  rules)  and  externally
added nonlinearity. But this has not produced the desired result. So in
this section, instead of using a linear CA and adding nonlinear compo-
nents  after  it,  we  integrate  nonlinearity  inside  the  CA.  However,  the
challenge  is  finding  an  appropriate  nonlinear  CA  that  satisfies  the
maximal-length property. For this, we use some existing theories from
[12, 13].  

Greedy Strategy for Constructing a Potential Nonlinear 
Maximal-Length Cellular Automaton  

5.1

In  [13],  a  technique  is  given  to  formulate  a  nonlinear  CA  from  a
known linear maximal-length CA that has the potential to be a maxi-
mal-length CA. In this section, we use those strategies to create such a

potential  nonlinear  CA  based  on  our  selected  CA  (150′)  by  changing
only some of its rules. We know that maximal-length CAs are always
reversible. Hence, our first target is to ensure that this condition is sat-
isfied by the synthesized CA.  

Synthesis of a Reversible Cellular Automaton  5.1.1

To synthesize an n-cell reversible CA based on CA (150′), the method-
ology of [12] is used. Here, all the balanced rules are divided into six
classes. Then, a rule-class relationship table is given that guides which
rules can be chosen as the rule for cell i + 1 from the class information
of  the  rule  of  cell  i.  For  the  sake  of  completeness,  we  reproduce
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Table 8,  which  depicts  the  class  information  of  the  participating  rule
ℛi,  0 ≤ i ≤ n - 1.  Using  this  table,  we  update  some  of  the  cells’  rules
(having  rule  150  by  default)  of  our  CA  to  nonlinear  rules  such  that
the  obtained  CA  is  always  reversible.  Table  9  shows  such  a  CA  for
n  32.  

(a) Class relationship of ℛi and ℛi+1.

Class of ℛi ℛi Class of ℛi+1

I 51, 204, 60, 195 I

85, 90, 165, 170 II

102, 105, 150, 153 III

53, 58, 83, 92, 163, 172, 197, 202 IV

54, 57, 99, 108, 147, 156, 198, 201 V

86, 89, 101, 106, 149, 154, 166, 169 VI

II 15, 30, 45, 60, 75, 90, 105, 120, I

135, 150, 165, 180, 195, 210, 225, 240

III 51, 204, 15, 240 I

85, 105, 150, 170 II

90, 102, 153, 165 III

23, 43, 77, 113, 142, 178, 212, 232 IV

27, 39, 78, 114, 141, 177, 216, 228 V

86, 89, 101, 106, 149, 154, 166, 169 VI

IV 60, 195 I

90, 165 IV

105, 150 V

V 51, 204 I

85, 170 II

102, 153 III

86, 89, 90, 101, 105, 106, VI

149, 150, 154, 165, 166, 169

VI 15, 240 I

105, 150 IV

90, 165 V

(b) First rule table.

Rules for ℛ0 Class of ℛ1

3, 12 I

5, 10 II

6, 9 III
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(c) Last rule table.

Rule Class for ℛn-1 Rule Set for ℛn-1

I 17, 20, 65, 68

II 5, 20, 65, 80

III 5,17, 68, 80

IV 20, 65

V 17, 68

VI 5, 80

Table 8. Rules to generate a reversible CA.         

No Blocking Word  5.1.2

In  a  maximal-length  CA,  all  configurations  except  one  are  reachable
from one another. This indicates that the CA does not have any block-
ing word in it.  

Definition 7.  A  subconfiguration  s  (si)i∈j, j+k-1  of  a  configuration

c  (si)0≤i<n  is  a  blocking  word  if  for  any  t ≥ 1,  Gn
t (c) i  si  for  each

i ∈ [j, j + k - 1], but Gn
t (c) l ≠ sl  for some l ∉ [j, j + k - 1]. Here Gn  is

the global transition function of the n-cell CA and 0 ≤ l < n [13]. 

To  illustrate  a  blocking  word,  let  us  consider  a  CA  (10,  90,  172,
150,  204,  20).  For  this  CA,  the  subconfiguration  111  is  a  blocking
word when it is applied to the second through fourth cells. The chain
of configurations 

001 110  011111  111 110  101 111  001110

forms  a  cycle  of  length  four.  Existence  of  a  blocking  word  indicates
that the flow of information in the CA is blocked. Obviously, there is
no information flow from the first two cells (and from the last cell) to
other  cells  in  this  particular  CA.  The  maximum  possible  cycle  length

that can be formed by these configurations is bounded by 2n-k, where

k is the length of the blocking word (here n  6 and k  3). Further,
a  configuration  having  a  blocking  word  is  always  unreachable  from
any configuration that does not have that particular word. For exam-
ple, the configuration 001010 cannot be reached from 001110 of the
given  CA.  Therefore,  existence  of  such  a  blocking  word  ensures  that
the CA is not a maximal-length CA.  

Unique Single-Length Cycle  5.1.3

Once we ensure that our CA has no blocking word, we need to check
for the existence of a unique single-length cycle.  
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Table 9. A  sample  nonlinear  (potential)  maximal-length  CA  following

Table 8 based on CA (150′). Nonlinear rules appear in bold. 

Definition 8. A CA Gn  forms a single-length cycle for a configuration x
if Gn(x)  x. 

We  can  imagine  a  single-length  cycle  as  a  full-length  blocking
word.  In  the  case  of  a  maximal-length  CA,  there  is  only  one  single-
length cycle. Therefore, if a CA has no or more than one single-length
cycle, then the CA is not a maximal-length CA [13]. 
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Now  we  move  on  to  develop  our  nonlinear  CA  that  satisfies  these
conditions. The following can be observed from Table 8:

The rule vector can have at most three consecutive nonlinear rules.  1.

The  rule  vector  can  have  at  most (⌊(n - 5) / 2⌋) + 3  nonlinear  rules,  and
the rest of the rules are chosen from the set of four rules: 90, 150, 105

and  165,  where  n ≥ 5.  For  our  case,  the  first  and  last  rules  are  10  and
20,  respectively  (which  are  equivalent  to  applying  rule  90  at  the  first
cell  and  rule  150  at  the  last  cell  for  the  null  boundary  condition),  and
the rest of the rules are rule 150.  

2.

Hence,  while  synthesizing,  we  consider  these  two  criteria.  Note
that it is highly likely that the CA developed in this way is of maximal
length,  although  there  is  no  guarantee.  An  example  of  such  a  nonlin-

ear CA based upon CA (150′) is given in Table 9. Here, only four non-
linear rules are injected into the base CA to make it nonlinear. 

Constructing Our Nonlinear Cellular Automaton  5.2

Our target is to find a nonlinear maximal-length CA of size 1409 that
has  a  good  randomness  quality.  As  there  is  no  known  foolproof
method  to  find  such  a  CA,  we  take  the  greedy  strategy  mentioned  in

the  previous  section.  That  means  we  take  our  CA  (150′)  as  the  base
CA  and  following  Conditions  1  and  2,  form  a  nonlinear  CA  using
Table 8 such that the CA is reversible, has no blocking word and has
a unique single-length cycle. However, there is no theoretical measure
known  to  check  whether  the  CA  synthesized  in  this  way  is  of  maxi-
mal  length.  The  only  way  is  to  run  the  n-cell  CA  and  see  whether  it

really has a cycle of length 2n-1.  
Now, with current computational resources, checking the result on

a  length  of  1409  is  an  impossible  task.  So,  we  take  another  greedy
approach.  Our  strategy  is  to  synthesize  32-bit  CAs  following  the
aforementioned  conditions  and  test  whether  these  CAs  have  a  good
randomness  quality  (in  terms  of  performance  in  the  Dieharder
testbed).  Then  we  choose  the  ones  that  give  the  best  result  to  be
repeated until length 1409. However, this cannot be a blind repetition
of 32 bits, but rather we have to be careful while applying the nonlin-
ear  rules  such  that  the  conditions  of  reversibility,  no  blocking  word
and  unique  single-length  cycle  are  not  violated.  To  maintain  the  sim-
plicity of code and computation, we take the occurrence of such non-
linear  rules  only  at  specific  intervals  that  are  multiples  of  six,  though
the starting point of this pattern may vary. 

While selecting a particular pattern and inserting a set of combina-
tions  of  nonlinear  rules,  each  rule  needs  to  be  checked  for  whether  it
is producing a blocking word in the CA. If the pattern does not give a
blocking  word,  it  is  then  tested  for  the  presence  of  a  unique  single-
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length  cycle.  Different  combinations  of  nonlinear  rules  of  length  32
that  are  both  nonblocking  and  give  one  single-length  cycle  are  put  to
the  test  on  Dieharder.  Out  of  all  the  CAs  that  are  tested,  a  set  of  six
CAs  that  performed  the  best  are  shown  in  Table  10.  We  use  these
patterns  and  extend  them  to  a  length  of  1409.  For  example,  in
the  fourth  row  of  Table  10),  the  CA  has  R0  10,
R5  R35  R65  ⋯  R1385  86,  R11  R41  ⋯  R1391  149,
R17  R47  ⋯  R1397  101,  R23  R53  ⋯  R1403  169,
R29  R59  ⋯  R1379  154,  R1408  20  and  Ri  150  for  all
other i. These CAs have a good chance of being a nonlinear maximal-
length CA, though there is no guarantee. 

Nonlinear Rules
Positions of Insertion in 

Sequence Failed Test Results

86, 149, 101, 154, 169 regular interval of six cells 
except the fourth and fifth, 
which are applied in an 

interval of 12

70 and 71

86, 149, 101, 154, 169 regular interval of six cells 70 and 71

86, 149, 101,169, 154 regular interval of six cells 71

86, 149, 101, 154 regular interval of six cells 71

86, 149, 101, 154 regular interval of six cells 
except the last rule, which is 
applied after 12 cells 

71

154, 86, 86, 86, 86 regular interval of six cells 71

Table 10. BigCrush  test  results  for  different  nonlinear  CAs  synthesized  based

on CA (150′). 

To choose a seed for this new generator, we once again follow the
same  procedure  of  Section  4.  Table  11  shows  the  best-performing
seed  for  these  nonlinear  CA-based  generators.  The  new  generator
works  the  same  way  as  the  linear  CA-based  PRNG  developed  in  Sec-
tion  3.  That  is,  each  configuration  produces  44  32-bit  numbers  that
are tempered using the same tempering function. We then put them to
rigorous  testing  on  Dieharder,  NIST  and  BigCrush  of  the  TestU01
library  using  this  seed.  If  not  otherwise  mentioned,  this  seed  is  set  as
the  default  for  the  nonlinear  PRNG  and  the  seed  number  367
(Table 4) as the default for the PRNGs of Sections 3 and 4. 
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11100111100110000110101010001100110111000101001110101001100
01101011100010011000111011000000111110011010001100100011010
00100111111010100000111000111001011101111000111000100110100
01101010011110011011101010111001100001010110001011110011001
00110111011000000010101001111101001001010010111110000011100
11111000010000110011011001001011110001011100111001010011000
00011010010111100000101001111111000111010111101101001000110
00011010000000111100010011100111110100111100010101001111010
00110001111011010001010101101010001110010010110000010101011
01011010010111101110110100011111000001000110010110010011101
11000100111001100010001100001101011111100011000111011101000
01101101100000110100101101101001111011010101000000110101001
01101000001011000110010111111011010011011000101101010100101
01110111000100010000011111010101011111111110001000010000101
01011000100011000101101001011100101101110011000000110100010
01111100111110001101101111110000101011100000000010111110011
10100100101110001100111011011000100000110001110111011101001
01000101001101001011101111101010001011100001000110010111101
00001110101111000010011001011011111101011100000001010101000
11100001011001100110011011000101101110100001011100101000111
01001100101000110011111101010111000000100010100000111100101
11000111110111000001101000111111100100110011010101100101110
01100100011000101110011111100110000000110011100111000001101
0001111010011100110010010011111100000010101011111000

Table 11. Selected seed for nonlinear PRNGs of Table 10. 

Results and Comparison  5.3

We first test our PRNG with the Dieharder testbed and see that it also
passes  all  tests  for  1.2GB;  we  do  not  include  this  result  as  a  table.
Next, the NIST test is applied to all versions of our PRNGs developed
so far and the MT family. Table 12 reports these results.  

PRNG Failed Test

MT19937 NIL

SFMT19937 NIL

TinyMT rank test

CA (150′) + Temper rank test

CA (150′) + Temper + Twist (both approaches) rank test

CA (150′) + Temper + Twist + XOR + Multiply 1 (Rank Test) rank test

Nonlinear PRNGs NIL

Table 12. Consolidated results on NIST for all PRNGs. 
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In  Table  12,  we  can  observe  that  TinyMT  and  the  previous
versions  of  PRNG  fail  the  rank  test  of  the  NIST  statistical  test  suite.
However,  our  final  nonlinear  PRNG  as  well  as  MT19937  and
SFMT19937  pass  all  tests  of  NIST.  Therefore,  this  new  PRNG  is  on
par with the MT family with respect to NIST. 

Finally,  we  apply  the  BigCrush  test  on  these  new  generators.  This
result  is  depicted  in  Table  10.  Here,  test  numbers  70  and  71  are
Matrix Rank, with r  15, s  15 and r  0, s  30, respectively. We
can observe that except for the first two CAs, the next four CAs pass
all  BigCrush  tests  except  test  number  71.  This  is  even  better  than  the
performance  of  all  versions  of  the  MT  family  (see  Table  13  for  the
detailed  comparison  of  results).  Among  these  four  CAs,  we  propose
to choose the CA with nonlinear rules 86, 149, 101, 154 applied at a
regular  interval  of  six  cells  as  our  default  PRNG.  An  implementation
of  this  PRNG  along  with  the  linear  versions  is  publicly  available  in
GitHub [14]. 
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Table 13. Updated  comparison  table  using  BigCrush  of  TestU01.  Only  failed
tests are shown. 
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It can be easily concluded from these tables that our nonlinear CA-
based  PRNG  outperforms  all  its  competitors:  MT19937,  TinyMT
and SFMT19937 on TestU01. It also performs equal to or better than
the MT family on Dieharder and NIST, in accordance with which, we
can say that our PRNG is the best PRNG among all. 

Conclusions and Next Steps   6.

Our  target  in  this  paper  is  to  see  if  simple  two-state  three-neighbor-
hood cellular automata (CAs) that have only local interaction can out-
perform  the  strongest  pseudorandom  number  generator  (PRNG)  like
the Mersenne Twister (MT) family. The approach we have taken is to
work  in  the  same  way  as  the  MT  and  see  how  far  we  can  go.  We
started  with  a  very  simple,  almost  uniform  cellular  automaton  (CA),

known  as  CA  (150′)  and  developed  PRNGs  using  it  over  cell  length
n  1409 (i.e., 3244 + 1). That means, similar to the MT, our gener-
ators  also  produce  a  group  of  numbers  (here  44  32-bit  numbers)
together  with  only  one  bit  of  wastage  per  configuration.  We  have
applied the same tempering function of MT19937 to scatter the num-
bers  generated  as  part  of  a  CA  configuration.  We  have  observed  that

if  we  apply  a  Twist  function  like  MT19937,  our  CA  (150′)-based
PRNG can pass all Dieharder tests, which is even better than its peers
MT19937 and SFMT19937.  

However,  this  version  of  the  PRNG  fails  some  BigCrush  tests  that
detect  nonlinearity  in  the  system.  To  address  this,  we  move  on  to

inject  nonlinear  rules  into  our  base  CA  (150′),  making  it  nonlinear
while preserving some conditions such that it has the potential to be a
nonlinear  maximal-length  CA.  On  this  newly  synthesized  nonlinear
CA,  we  apply  the  tempering  function  of  MT19937  to  develop  our
final PRNG. This PRNG also produces 44 32-bit numbers from a sin-
gle configuration. This PRNG was tested with the default seed for the
PRNG  on  Dieharder,  NIST  and  TestU01  of  the  BigCrush  library.  It
can be seen that our PRNG beats the MT and all its peers in terms of
randomness  quality  and  simplicity,  passing  every  test  of  Dieharder
and NIST with only one failed test in BigCrush. 

This  shows  that  such  a  simple  CA  can  also  beat  the  strongest
PRNG  developed  so  far.  Also,  it  shows  the  power  of  nonlinear
maximal-length  CAs  even  if  only  a  tiny  amount  of  nonlinearity  is
added  to  the  base  linear  maximal-length  CA.  Since  we  have  not  been
able  to  completely  explore  the  vast  world  of  possible  nonlinear  CAs,
we believe some nonlinear maximal-length CAs may be identified that
can  pass  all  empirical  testbeds  even  without  the  need  of  tempering.
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Furthermore,  many  other  CAs  similar  to  CA  (150′)  can  be  investi-

gated (e.g., CA (90′) of [8]), which may have a similar quality. As bit-
wise  operations  are  possible  for  these  simple  CAs,  work  may  be
directed to use them as parallel random number generators, which the
current parallel computing environment is in dire need of.
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