
Cellular Automaton–Based Emulation of
the Mersenne Twister

Kamalika Bhattacharjee*

Nitin More

Shobhit Kumar Singh
Nikhil Verma

Department of Computer Science and Engineering
National Institute of Technology
Tiruchirappalli, Tamilnadu – 620015, India
*corresponding author, kamalika.it@gmail.com

{Nitinmore6990, sks.shobhit12, nikhilverma793}@gmail.com

The Mersenne Twister (MT) (MT19937), developed 30 years ago, is
the de facto pseudorandom number generator (PRNG) used in many
computer programs. This paper proposes a candidate that offers a
randomness quality that is better than MT19937 and its sisters
SFMT19937 and TinyMT. A special three-neighborhood, two-state

cellular automaton (CA), called CA (150′) is the underlying model of
this PRNG. The same working style of MT19937 is used, while avoid-
ing the problems of the MT, like a large state space and the zero-access
initial state problem. Nonlinearity is added in the base simple linear CA
such that the properties of the base CA are not violated. Finally, a
PRNG is developed using this CA that beats MT19937 as well as its
advanced versions over the standard empirical platforms Dieharder,
TestU01 and NIST.

Keywords: Mersenne Twister (MT); Sophie Germain prime;
pseudorandom number generator (PRNG); maximal-length cellular
automata; CA (150′); nonlinearity

Introduction1.

Pseudorandom number generators (PRNGs) are inherently essential in
modern computing paradigms including stochastic computing, Monte
Carlo simulations, testing and randomized algorithms. Since its pro-
posal by Makoto Matsumoto and Takuji Nishimura in 1997 [1], the
Mersenne Twister (MT) has become the de facto PRNG in many soft-
ware and language implementations, like Maple, Python, PHP, GLib,
MATLAB and the GCC compiler. The reason is that it has a huge
state space—the most popular version (MT19937) has 19937 bits of
state—due to which, the period is very large (the sequence will not

https://doi.org/10.25088/ComplexSystems.32.2.139

mailto:kamalika.it@gmail.com
https://doi.org/10.25088/ComplexSystems.32.2.139

repeat before 219937 - 1 numbers for MT19937). Also, the perfor-
mance of the MT and its sister PRNGs, like the SIMD-oriented fast
Mersenne twister (SFMT) [2], is very good on empirical testbeds [3],
which makes them attractive choices for ease of implementation in
software.

However, the MT family has some serious drawbacks. First, it com-
putes and stores a huge state even though only a few numbers are
required; for example, in the case of MT19937, 623 32-bit numbers
are generated and stored every time. Second, it suffers from the zero-
excess initial state problem where, if a large number of bits in the ini-
tial state are 0, nonchaotic patterns may be generated, making the
sequence nonrandom. Third and most important, due to its linearity,
the MT as well as its sisters SFMT and tiny Mersenne twister
(TinyMT) [4] fails several important statistical tests, such as
Marsaglia’s linear-complexity test, the binary-rank test [5] and
BigCrush of the TestU01 library [6].

We propose a new PRNG that works in the same way as the MT,
but uses a much smaller state space, while giving better performance
than the MT family in all empirical tests. Also, it is fast enough and
easy to implement for general usage. Our PRNG is based on cellular
automata (CAs), which have long been established as an effective
choice for a source of randomness [7]. More specifically, we exploit
the properties of a special two-state three-neighborhood cellular

automaton (CA), called CA (150′), introduced in [8]. This CA,
defined over a null boundary, takes rule 150 for every cell except the
first cell, which uses rule 90 and has the potential to generate a maxi-
mal cycle length of 2n - 1 if the size of the CA n is a Sophie Germain
prime. To improve the inherent randomness quality of the CA, we
also use the Temper and Twist functions, similar to MT19937. An
initial version of this work is reported in [9]. This paper reports an
extension of that work that further improves the proposed PRNG and
establishes itself as the best random number generator, beating the
MT family in all the standard empirical testbeds: Dieharder, BigCrush
and NIST [10].

The paper is organized as follows: Section 2 briefly states the back-
ground required to understand the underlying concepts. In the next
three sections, we gradually develop our PRNG and improve it based
on its performance in testbeds. Section 3 recollects the basic prototype

of the PRNG based on CA (150′). We choose 1409 as the CA size so
that it generates 44 32-bit numbers at a time, just like the MTs, but
takes only 1409 bits as its state, making it lightweight. A proper seed
is selected to prevent the zero-excess initial state problem. Then we
apply tempering and test our PRNG over the statistical testbeds. We
can see that our PRNG fails the rank test of Dieharder, the Matrix
Rank test of BigCrush and the LinearComp test of BigCrush. So to

140 K. Bhattacharjee, N. More, S. K. Singh and N. Verma

Complex Systems, 32 © 2023

further enhance its randomness, in Section 4 we add a nonlinear com-
ponent to the PRNG. Two approaches are taken, Twist of MT19937
as well as XOR + multiplication. Now the PRNG passes all tests of
Dieharder, but the linearity tests of BigCrush can still detect nonran-
domness in the PRNG. Hence, in Section 5 we use a different tech-
nique. Instead of adding a nonlinear component outside the CA,
which makes the PRNG slow, we switch to nonlinear CAs. This sec-
tion identifies an appropriate nonlinear CA that satisfies our criteria
and develops our final PRNG. We show that this PRNG performs bet-
ter than all of its competitors, MT19937 and SFMT19937, passing
almost all existing empirical tests.

Background2.

Here, a brief overview of the MT, different testbeds used in this paper

and CAs, especially CA (150′), is given.

The Mersenne Twister2.1

The MT, a well-known general-purpose PRNG, is derived from a
twisted generalized feedback shift register (TGFSR) such that its

period is a Mersenne prime 219937 - 1. This PRNG can generate a
sequence of numbers very quickly by avoiding multiplication and divi-
sion and efficiently utilizing memory and cache.

Algorithm2.1.1

The MT works in the following way (see Figure 1): first, a 32-bit inte-
ger, considered as the seed, is employed to initiate the state of the
TGFSR, which is 19 937 bits. This is done by consecutively filling the
next 624 words of the initial state array using some XOR, shift, addi-
tion and multiplication with a constant over the previous word in the
array (the first word being the seed). Observe that 32624  19 936.
Then the Twist function is applied to produce the next state of the
PRNG. However, instead of directly generating each state as output,
the internal states are divided into 624 32-bit words (integers) and the
Temper function is applied over each integer before producing it as
output. The Twist function is used again to update the next state of
the TGFSR but only when all 624 numbers are exhausted.

Tempering is defined by the following transformations applied suc-
cessively:

y  x⊕ (x ≫ u) (1)

y  y⊕ ((y ≪ s) AND b) (2)

Cellular Automaton–Based Emulation of the Mersenne Twister 141

https://doi.org/10.25088/ComplexSystems.32.2.139

https://doi.org/10.25088/ComplexSystems.32.2.139

y  y⊕ ((y ≪ t) AND c) (3)

z  y⊕ (y ≫ l) (4)

where the integers t, u, l, s are tempering parameters, c and b are
bitmasks of the word size of the computer, x is the next number gener-
ated in the series and z is the vector returned. Observe that all opera-
tions are bitwise XORs, ANDs, ORs and shifts. Table 1 depicts the

Figure 1. Working principle of the MT.

Value

Parameter 32-bit 64-bit

n 624 312

w 32 64

r 31 31

m 397 156

a 0x9908B0DF 0xB5026F5AA96619E916

u 11 29

s 7 17

t 15 37

l 18 43

b 0x9D2C5680 0x71D67FFFEDA6000016

c 0xEFC60000 0xFFF7EEE00000000016

Table 1. MT19937 32-bit and 64-bit parameters.

142 K. Bhattacharjee, N. More, S. K. Singh and N. Verma

Complex Systems, 32 © 2023

32-bit and 64-bit parameters used for MT19937. These parameters
are selected in such a way that the period is the Mersenne prime

219937 - 1, longest among all its predecessors, which is one of the rea-

sons for the popularity of the MT. Further, for every 1 ≤ k ≤ 623, the

MT is k-distributed to 32-bit accuracy. However, the MT is not cryp-
tographically secure because the Twist function is not a one-way
function.

Limitation and Improvement2.1.2

The MT has a serious limitation in initialization, known as the zero-
access initial state problem. If the number of zeros in the initial state
is sufficiently high, then, for more than 10 000 generations, the gener-
ated sequence may continue to have many zeros, resulting in corre-
lated output sequences. Furthermore, due to its large state space of
19 937 bits and linearity, the next state of the MT is easy to predict
from the previous states, which makes it unsuitable for cryptographic
purposes. New variants are proposed to avoid these limitations:

SFMT. Single instruction, multiple data (SIMD)-oriented fast MT
(SFMT) uses SIMD (like 128-bit integer) operations and multistage
pipelines along with all properties of the MT. It generates both 32-bit
and 64-bit unsigned integer numbers, plus double-precision floating-
point numbers. It is almost two times faster than the MT and has an
improved equidistribution property and a quicker recovery from the
zero-excess initial state problem than the MT. Here we use
SFMT19937, which has the same period length as MT19937.

TinyMT. TinyMT is introduced to operate over a small state space

of 127 bits, resulting in a shorter period of 2127 - 1. Still, it passes
many noncryptographic statistical tests. Here we use TinyMT32,
which has to be initialized with the following set of parameters:

mat1  0x8f7011ee  2 406486 510

mat2  0xfc78ff1f  4 235788 063

tmat  0x3793fdff  932 445695.

Testbed 2.2

This paper uses three standard batteries of empirical tests: Dieharder,
NIST statistical test suite and BigCrush of the TestU01 library. Next
we briefly discuss them.

Dieharder 2.2.1

The Diehard tests [11] are a battery of statistical tests developed by
George Marsaglia in 1995 for measuring the quality of a PRNG.
Later, an extended version called Dieharder that contains 114 tests

Cellular Automaton–Based Emulation of the Mersenne Twister 143

https://doi.org/10.25088/ComplexSystems.32.2.139

https://doi.org/10.25088/ComplexSystems.32.2.139

was developed [5]. Similar to the Diehard tests, the Dieharder tests
also return p-values that indicate the performance of a PRNG in the

test.

TestU01 2.2.2

TestU01 is an ANSI C language software library that provides a col-
lection of utilities for statistically testing the randomness of PRNGs
[6]. Both classical statistical tests for PRNGs as well as many original
tests are implemented as part of the library. These tests can be used
over streams of random numbers stored in files as well as any user-
defined generators and the predefined generators in the library. If the
corresponding p values are within 0.001 to 0.999, the PRNG passes

the test. We have considered the most stringent battery of tests—the
“Big Crush,” containing 160 tests.

NIST 2.2.3

The NIST statistical test suite [10] is comprised of 15 tests generated
to test cryptographic properties of PRNGs. The reference distribution

is considered as the standard normal and the chi-square (χ2) for many

of these tests. For a sample size α, the range of acceptable proportions
for x is calculated as

(1 - α) ± 3
α(1 - α)

m

where α  0.01 and x is the minimum pass rate.

Cellular Automata 2.3

We consider three-neighborhood, two-state n-cell CAs under the null
boundary condition where each cell of the CA can take a different
rule, that is, the CA is nonuniform. Such a CA can be represented by
a rule vector ℛ  〈R0, R1, …, Rn-1〉, which indicates, for each i,

0 ≤ i ≤ n - 1, the ith cell takes rule Ri to update its next state. For
example, consider two rules:

rule 90 :R90(x, y, z)  x⊕ z

rule 150 :R150(x, y, z)  x⊕ y⊕ z

where x, y, z ∈ {0, 1} represents the states of the left neighbor, the cell

under consideration and the right neighbor, respectively. These are
linear rules.

Definition 1. A rule Ri : {0, 1}
3  {0, 1} is called linear if

Ri(x, y, z)  c0x⊕ c1y⊕ c2z, where ci ∈ {0, 1} is a constant; otherwise

it is a nonlinear rule.

144 K. Bhattacharjee, N. More, S. K. Singh and N. Verma

Complex Systems, 32 © 2023

Definition 2. A rule Ri : {0, 1}
3  {0, 1} is complemented if

(x, y, z)  1 -Ri(x, y, z), where rule Ri is a linear rule.

There are eight linear rules—0, 60, 90, 102, 150, 170, 204 and
240, and eight complemented rules—15, 51, 85, 105, 153, 165, 195
and 255. A CA that uses these 16 rules can be efficiently character-
ized by algebraic tools. We call a rule nonlinear if it is neither linear
nor complemented.

Definition 3. If a rule vector ℛ contains only linear rules, then the CA
is called linear. If at least one rule is complemented and the rest are
linear, then the CA is a complemented CA. Otherwise, (i.e., at least
one rule of ℛ is nonlinear) the CA is a nonlinear CA.

The snapshot of all cells at any time instant is called the configura-
tion of the CA. A CA evolves through its configuration space
Cn  {0, 1}n by its global transition function Gn, where Gn :Cn  Cn.

Definition 4. A CA is reversible if for each of its configurations x ∈ Cn,
x  Gn

t (x) for some t ∈ .

Definition 5. A rule is balanced if its eight-bit binary representation
contains an equal number of zeros and ones.

Out of 256 rules, only 70 rules are balanced. Under the null bound-
ary condition, however, only 62 balanced rules can participate in
forming a reversible CA. Some reversible CAs can be of maximal
length. An n-cell CA is called a maximal-length CA if all except one
of the configurations form a single cycle of length 2n - 1. Only
rules 90 and 150 can form a nonuniform linear maximal-length CA.

Theorem 1. A linear CA is of maximal length if and only if the rule
vector of the CA consists of rules 90 and 150, and its characteristic
polynomial is primitive over GF(2) [8].

However, any arbitrary sequence of rules 90 and 150 does not
form a maximal-length CA. In this paper, we are interested in one spe-
cial CA formed with these two rules that has the potential to become
a maximal-length CA.

Definition 6. An n-cell rule vector ℛ  〈R0, R1, …, Rn-1〉 is called a

CA (150′) if R0  90 and Ri  150, where 1 ≤ i ≤ n - 1 [8].

This CA was introduced by Adak and Das in [8], who describe
three greedy strategies for finding primitive polynomials of a large
degree over GF(2). Some greedy strategies are reported that synthesize
(linear) CAs, which are almost always maximal-length CAs, that is,
with a primitive characteristic polynomial. The paper reports a list of

CA sizes for which CA (150′) is a maximal-length CA (reproduced as
Table 2). Here, * marks false positives.

Cellular Automaton–Based Emulation of the Mersenne Twister 145

https://doi.org/10.25088/ComplexSystems.32.2.139

https://doi.org/10.25088/ComplexSystems.32.2.139

2
3

5
9

1
1

1
4

2
3

2
6

2
9

3
5

3
9

4
1

5
0
*

5
3

6
5

6
9

7
4

8
1

8
3

8
6

8
9

9
5

9
8
*

9
9
*

1
0
5

1
1
3

1
1
9

1
3
1

1
3
4
*

1
4
6

1
5
5

1
5
8

1
7
3

1
7
9

1
8
9

1
9
1

1
9
4
*

2
0
9

2
2
1

2
3
0

2
3
1

2
3
3

2
3
9

2
4
3

2
5
1

2
5
4

2
7
8
*

2
8
1

2
9
3

2
9
9

3
0
3

3
2
3

3
2
6

3
2
9

3
3
8
*

3
5
0
*

3
5
9

3
7
1

3
7
5

3
8
6

3
9
8

4
1
0
*

4
1
1

4
1
3

4
1
9

4
2
9

4
3
1

4
4
3

4
5
3

4
7
0

4
7
3

4
9
1

5
0
9

5
1
5

5
1
9

5
3
0

5
3
1

5
4
3

5
5
4

5
6
1

5
7
5

5
9
3

6
1
4
*

6
1
5

6
2
9

6
3
8

6
3
9

6
4
1

6
4
5
*

6
5
0
*

6
5
3

6
5
9

6
8
3

6
8
6
*

7
1
3

7
1
9

7
2
3

7
2
5

7
4
1
*

7
4
3

7
4
6

7
4
9

7
6
1

7
7
9

7
8
3
*

7
8
5

8
0
3
*

8
0
9

8
1
8

8
3
1

8
3
3

8
6
6

8
7
3

8
9
3

9
1
1

9
2
3

9
5
0
*

9
5
3

9
6
5

9
7
4
*

9
7
5

9
8
6
*

9
8
9

9
9
3

9
9
8

1
0
1
3

1
0
1
9

1
0
3
1

1
0
3
4
*

1
0
4
1

1
0
4
3

1
0
4
9

1
0
7
0

1
1
0
3

1
1
0
6
*

1
1
1
8

1
1
1
9

1
1
2
1

1
1
3
3

1
1
5
4

1
1
5
5

1
1
6
6

1
1
6
9

1
1
7
8
*

1
1
8
5

Table 2. Value of n such that the n-cell CA (150′) is of maximal length [8].
Here, * marks false positives.

Note that the presence of rule 90 in this CA in its first cell with
rule 150 over all other cells helps it to achieve maximality for some n.
The following conjecture gives an idea of such n [8]:

Conjecture 1. Characteristic polynomials of CA (150′) of size n are
primitive over GF(2) if n and 2n + 1 are both primes (i.e., n is a
Sophie Germain prime) [8].

146 K. Bhattacharjee, N. More, S. K. Singh and N. Verma

Complex Systems, 32 © 2023

Table 2 validates this conjecture. Here, we can see that, if n is a
Sophie Germain prime, that is, both n and 2n + 1 are primes, then

CA (150′) of size n has the maximal-length property. There are 42

Sophie Germain primes up to 1200 and for all of them, CA (150′)

shows maximality. Hence, for our work, we take an n-cell CA (150′)
where n is a Sophie Germain prime.

Phase I: Making Our Own Pseudorandom Number Generator3.

As discussed, the number of cells n of our CA for developing PRNG is
chosen to be a Sophie Germain prime. Hereafter, we consider only
those n where n is a Sophie Germain prime. So our task is to finalize
the specific Sophie Germain prime suitable for our purpose.

Selection of Proper n3.1

Before selecting n, the maximality claim needs to be verified because
there are some false positives in Table 2. We can evolve the CA and
check if there is actually a cycle of length 2n - 1. However, if n is
large, it is practically infeasible to run the CA up to 2n configurations.

In this situation, the following property of CA (150′) can reduce the
search space:

Property 1. The CA (150′) with size n is reversible for any n except
n ∈ 3 + 1 [8].

Therefore, if n is selected as a Sophie Germain prime such that
n ∉ 3 + 1, then the initial configuration will eventually repeat, and
all configurations are part of some cycles. Using this information, we
develop the following strategy to test maximality:

CA (150′) with size n where n is a Sophie Germain prime and
n ∉ 3 + 1 is declared as a maximal-length CA if either the com-
plete cycle length test was possible or the initial configuration

has not returned even after 109 steps, that is, the cycle length is

larger than 109.

Therefore, our maximality testing method is:

Take an n where n is a Sophie Germain prime and n ∉ 3 + 1. 1.

For that n, check if CA (150′) has configuration 000⋯00 as a single-
length cycle (this configuration repeats itself). If the CA is a maximal-
length CA, all other configurations must be in the same cycle.

2.

Take any other configuration as the seed and run CA (150′) on it until
the seed is obtained as the next configuration. If the seed is obtained

again after exactly 2n - 1 steps, the CA is a maximal length for size n.

3.

Cellular Automaton–Based Emulation of the Mersenne Twister 147

https://doi.org/10.25088/ComplexSystems.32.2.139

https://doi.org/10.25088/ComplexSystems.32.2.139

For large n, check if the seed is repeated within 109 steps. If not,
declare the CA as a (possible) maximal-length CA.

4.

Table 3 shows the results for 3 ≤ n ≤ 36 where the seed is

00⋯001. The bold rows indicate the sizes n where CA (150′) is a
maximal-length CA. In the case n ∈ 3 + 1, the CA is irreversible and
not tested. We can observe that for all Sophie Germain primes up to

36, CA (150′) is a maximal-length CA. We also test this scheme on
arbitrary large values of Sophie Germain primes (up to 2000) and see

that for all those n, the period length of the CA is greater than 109.

n
Number of
Configurations

Observed

Cycle n
Number of
Configurations

Observed

Cycle

3 8 7 20 1048576 1023

4 16 21 2097152 127

 5 32 31 22 4194304

6 64 21 23 8388608 8388607

7 128 24 16777216 2097151

8 256 15 25 33554432

 9 512 511 26 67108864 67108863

10 1024 27 134217728 1048575

 11 2048 2047 28 268435456

12 4096 1023 29 536870912 536870911

13 8192 30 1073741824 17043521

14 16384 16383 31 2147483648

15 32768 31 32 4294967296 63

16 65536 33 8589934592 1227133513

17 131072 4095 34 17179869184

18 262144 29127 35 34359738368 34359738367

19 524288 36 68719476736 511

Table 3. Observed cycle lengths of CA (150′).

Now, since the size of the state in MT19937 takes the form of
32x + 1, we finalize our CA size with a similar n. The benefit is, at
any given time, x number of 32-bit outputs will be ready from a sin-
gle configuration, with only one unused bit. However, to make the
size of each configuration not too large, while keeping the cycle
length not too small, we select n  1409 for the PRNG, a Sophie
Germain prime of the form 32x + 1. Here, every single configura-
tion produces 44 32-bit random numbers.

148 K. Bhattacharjee, N. More, S. K. Singh and N. Verma

Complex Systems, 32 © 2023

Need of Temper Function 3.2

However, the presence of rules 90 and 150 in the CA always creates
equilateral triangles in its spacetime diagram. See Figure 2 for an
example with n  353. If we extract numbers containing these pat-
terns, they will be correlated and not random. To remove these
patterns from our PRNG, we use the tempering technique that has
been utilized by the MT family. In fact, the same tempering functions
used by MT19937 are used in this paper to make the comparison
between their performance on a similar platform (see equations (1) to
(4)). Here x is the 32-bit number generated by the consecutive 32 bits
from the CA configuration with the remaining coefficients:

(u, d) = (11, 0xFFFFFFFF16)

(s, b) = (7, 0x9D2C568016)

(t, c) = (15, 0xEFC6000016)

l = 18.

Figure 2. Spacetime diagram for CA (150′) with n  353.

Cellular Automaton–Based Emulation of the Mersenne Twister 149

https://doi.org/10.25088/ComplexSystems.32.2.139

https://doi.org/10.25088/ComplexSystems.32.2.139

Figure 3 shows a sample spacetime diagram for CA (150′) with
n  353 that can generate 11 32-bit numbers from one configuration
(the binary representation of these numbers is concatenated in Fig-
ure 3 to compare with Figure 2). It can clearly be seen that tempering
eliminates the equilateral triangles and patterns, significantly improv-
ing the randomness quality of the produced numbers.

Figure 3. Spacetime diagram for tempered numbers generated using

CA (150′) with n  353.

Finding the Best Seed 3.3

The first characteristic of a PRNG is that its sequence can be repro-
duced by using the same seed. Hence, the choice of a good random
seed is crucial. We take the following steps to obtain the best-perform-
ing seed for our PRNG:

150 K. Bhattacharjee, N. More, S. K. Singh and N. Verma

Complex Systems, 32 © 2023

Generate 1000 random seeds using rand, where each seed has an
equal distribution of zeros and ones for every 32 bits. This is to remove
any bias of zeros and ones. A seed with an equal distribution of zeros
and ones increases the probability of an equal distribution throughout
the cycle.

1.

For each seed, generate a 12MB binary file using the 32-bit outputs of
the PRNG.

2.

Test the binary file on the Dieharder [5] test suite. 3.

Since Dieharder works on large file sizes, a small file size of 12MB will
obviously result in many failed tests. However, if the seed fails more
than six tests, testing stops.

4.

Out of all the seeds, those passing more than 40 tests before stopping
are considered.

5.

After complete analysis, seed numbers 187 and 367 are found to be
the best-performing seeds. These seeds are shown in Table 4. In the
following section, we consider results of only these two seeds.

Seed Number 187
10100111111000110100100110100110001010111111100110001000011
10100000101101100010010100111010001111100010001100011110101
11111000001100111010011100010011000011110011000000011110101
10010011100111010001101110101111010100010101010011110010011
01010110001110010100000100100111101000010110110101101010101
10001100111010011000110101101010000101111111100100101001001
11101001101000000011011001110101100111110110000001001110010
00110011001111010101101000010011011001001110110000111010110
00010110110001101001001111000101010110101010011101100001110
10110000101101111100101100111101010000001110001111001100001
01001000100100111110011110010101011010100111001100000011110
01010011101101110100100001010011001010100100111111100100010
10011101111110001000010010101001101000010010101101111010101
10010111000110100100011011010100110100001010011101001111010
01111000011011110010100000101010101011111011100100110111011
10000100001001010101011010001010101011010011100010001100011
11010111111000001101011011100110011010100101000101000100000
11010111110110100101010111011011011100101000110000101000010
01101011010001101011101110011110010101000111110010010001001
10110011110000011101010001110010110000110101000100101101111
01100101111010110100101000100101000110011001110010111000110
01101000111011111001010011101010001000100100010001111111010
00100101000111110111010101110011000010101100010001001111110
1001010110011101000010101101001001101010100011001011

Table 4. (continues)

Cellular Automaton–Based Emulation of the Mersenne Twister 151

https://doi.org/10.25088/ComplexSystems.32.2.139

https://doi.org/10.25088/ComplexSystems.32.2.139

Seed Number 367
10001110001111011001000111010101000001001010011110011001101
00111110111001100110110000100011110001101011100111101001000
01010101010011011011101001111000010000110100101110100101100
10010001101010111110110001101111110001000010001000000100110
01110111101110011000111010011001011010000100010110111101001
00101010110101101011001010000011001110100101111000101101100
10011100000010101010011111001111100000001011101001010010111
10111001111110100111100110101000000001111010001000100101111
00010111010100010010011011000011011110011001111001101010110
00001100110110100101011100011011010100101011000101111010100
00010010001111101011010000011110001111101010000011100010110
11000110010110100111001111010100000111010111001000110110100
10110001110000111001111000101101110011010001100110100010101
10110010011011000010111001011001010111011010100010011111000
00101010001100100011111001010010111011001011100011100101010
01001100011100001101011000110000011111010111010011010000100
00011011111110101101001100010100010111011100100110110100011
00100011010001001111110001011100101110010100100101011110100
00100111110110101110001000110010100011001111110101011100000
00011011100001010111111100100100100001010111011010111110100
10000101010001100011001111011001011000110000101111011110000
11011000010011111001001000011110100101100100011000011010111
11100011000111001011100011010010001101101010011010111011001
1111010101000001100011000100000001000111101111110011

Table 4. Seed numbers 187 and 367 selected for our PRNG.

Results and Comparison with Mersenne Twister 3.4

We test our generator using Dieharder and BigCrush of the TestU01
test suites. As already mentioned, the Dieharder test suite contains
114 tests, whereas BigCrush of TestU01 contains the 106 most strin-
gent tests. For comparison, we consider MT19937, SFMT19937 and
TinyMT for 32 bits with their default seeds. The results are discussed
in the following.

Dieharder 3.4.1

The desirable file size for a Dieharder test is usually more than 10GB.
However, for testing our PRNG (on seed numbers 187 and 367) and
to get a meaningful comparison, we use two file sizes of 1.2GB and
12GB. We can observe in Table 5 that, for all the generators, not even
a single test fails on Dieharder over 12GB file size; hence, we use a
smaller file size to compare the performance. It can be noticed that
for this smaller file size of 1.2GB, our PRNG outperforms all its com-
petitors for both the seeds. Since seed number 367 performs better
between these two seeds, we choose it as our default seed to perform
the remaining tests.

152 K. Bhattacharjee, N. More, S. K. Singh and N. Verma

Complex Systems, 32 © 2023

 CA (150′)+tempering Competitors

Seed 187 Seed 367 MT19937 TinyMT SFMT19937

File Size Weak Failed Weak Failed Weak Failed Weak Failed Weak Failed

1.2GB 7 2 6 1 5 3 5 2 7 5

12GB 4 0 2 0 2 0 3 0 2 0

Table 5. Comparison using Dieharder.

BigCrush of the TestU01 Library 3.4.2

Table 6 reports on the tests that failed on the BigCrush of TestU01
library for our PRNG (with default seed 367) and its competitors.
Here, for each of the failed tests, the p-value is either eps, meaning a

value < e-300, or 1-eps1, which means a value < e-15. Over
BigCrush, our PRNG performs more poorly than MT19937,
SFMT19937 failing four out of 106 tests, whereas these variants of
the MT fail on only two tests. These four tests are basically the
Matrix Rank and LinearComp tests [6], which detect elements of lin-
earity in the generated sequence. Therefore, the failure of our PRNG
on these two tests may be due to its inherent linearity. To address
this, we add nonlinearity in our generator to further improve its ran-
domness quality.

Cellular Automaton–Based Emulation of the Mersenne Twister 153

https://doi.org/10.25088/ComplexSystems.32.2.139

https://doi.org/10.25088/ComplexSystems.32.2.139

O
u
r
P
R
N
G

M
T
1
9
9
3
7
 a
n
d
 S
F
M
T
1
9
9
3
7

T
in
y
M

T

T
es
t

N
u
m
b
er

T
es
t
N
am

e

T
es
t

N
u
m
b
er

T
es
t
N
am

e

T
es
t

N
u
m
b
er

T
es
t
N
am

e

T
es
t

N
u
m
b
er

T
es
t
N
am

e

7
0

M
at
ri
x
 R
an

k
,
r


1
5
,
s


1
5

8
0

L
in
ea
rC

o
m
p
,
r


0

8
C
o
ll
is
io
n
O
v
er
,
t


7

6
9

M
at
ri
x

 R
an

k
,
L


1
0
0
0
,
r


2
6

7
1

M
at
ri
x
 R
an

k
,
r


0
,
s


3
0

8
1

L
in
ea
rC

o
m
p
,
r


2
9

1
0

C
o
ll
is
io
n
O
v
er
,
t


1
4

7
0

M
at
ri
x

 R
an

k
,
r


1
5
,
s


1
5

8
0

L
in
ea
rC

o
m
p
,
r


0

1
2

C
o
ll
is
io
n
O
v
er
,
t


2
1

7
1

M
at
ri
x

 R
an

k
,
r


0
,
s


3
0

8
1

L
in
ea
rC

o
m
p
,
r


2
9

1
9

B
ir
th
d
ay
Sp

ac
in
gs
,
t


8

8
1

L
in
ea
rC

o
m
p
,
r


2
9

2
1

B
ir
th
d
ay
Sp

ac
in
gs
,
t


8

8
7

L
o
n
ge
st
H
ea
d
R
u
n
,
r


2
7

2
7

S
im

p
P
o
k
er
,
r


2
7

1
0
2

R
u
n

 o
f
b
it
s,

 r


2
7

5
8

A
p
p
ea
ra
n
ce
Sp

ac
in
gs
,
r


2
7

Table 6. Comparison using BigCrush of TestU01. Here, only failed tests are
shown.

154 K. Bhattacharjee, N. More, S. K. Singh and N. Verma

Complex Systems, 32 © 2023

Phase II: Improving Our Pseudorandom Number Generator by

Nonlinearity

4.

Empirical data from the previous section suggests that our PRNG has
an element of linearity, which makes the sequence less random and
more susceptible to attack. This section explores some techniques to
add a nonlinear module to our generator and compare the perfor-
mances. We take two main approaches:

Using procedure Twist of MT19937. There are two ways to incorpo-
rate this into our generator:

1.

Twist on output.(a)

Twist on CA configuration. (b)

Using a basic nonlinear component, such as XOR followed by Multi-
ply, performed after Twist on the output.

2.

Using Twist 4.1

MT19937 uses Twist as the function to generate the next state of its
623-word state. Even though Twist produces the 623-word state in a
single iteration, it does so by manipulating the individual words one
at a time. We exploit this fact to design our two approaches to incor-
porate Twist in our generator:

◼ On output. Instead of directly generating output after applying
Temper, we apply Temper followed by Twist to generate the output
(see Figure 4(a)).

◼ On CA configuration. This is similar in principle to what MT19937
does. We first generate the next configuration of the CA and then apply
Twist to generate the final form of the PRNG state. Then we apply
Temper to extract individual numbers (see Figure 4(b)).

The generated PRNGs are once again tested using the default seed
367. Table 7 depicts the results, showing that our generator with Tem-
per+Twist on Output passes all Dieharder tests, beating the others at
both input sizes 1.2GB and 12GB. However, there is no improvement
for these generators in the BigCrush test results. Therefore, the Twist
function is not sufficient to remove the element of linearity from our
PRNG. Next, we explore another method to add nonlinearity.

Cellular Automaton–Based Emulation of the Mersenne Twister 155

https://doi.org/10.25088/ComplexSystems.32.2.139

https://doi.org/10.25088/ComplexSystems.32.2.139

(a) Twist on output (b) Twist on

configuration

(c) Using XOR

+ Multiply

Figure 4. Applying nonlinearity to our PRNG.

156 K. Bhattacharjee, N. More, S. K. Singh and N. Verma

Complex Systems, 32 © 2023

D
ie
h
ar
d

B
ig
C
ru
sh

 o
n

 B
o
th

T
w
is
t
o
n

 O
u
tp
u
t

T
w
is
t
o
n
 C

o
n
fi
g
u
ra
ti
o
n

#

T
es
t
N
am

e

1
.2

G
B

1
2
G
B

1
.2

G
B

1
2
G
B

7
0

M
at
ri
x
 R
an

k
,
r


1
5
,
s


1
5

W
ea
k

F
ai
le
d

W
ea
k

F
ai
le
d

W
ea
k

F
ai
le
d

W
ea
k

F
ai
le
d

7
1

M
at
ri
x
 R
an

k
,
r


0
,
s


3
0

4

1

1

0

9

3

2

0

8
0

L
in
ea
rC

o
m
p
,
r


0

8
0

L
in
ea
rC

o
m
p
,
r


2
9

Table 7. Results after applying Twist on Diehard and BigCrush of the
TestU01 library.

XOR + Multiply 4.2

To add nonlinearity in this approach, XOR followed by the multipli-
cation operation on the output with numbers close to Sophie Germain
primes is used over numbers generated via the Temper+Twist on Out-
put method. Figure 4(c) shows the flowchart.

However, unfortunately, there is also no improvement in perfor-
mance in BigCrush. The same tests fail again (likewise Table 7). At
this point, our PRNG has become much slower by getting overloaded

Cellular Automaton–Based Emulation of the Mersenne Twister 157

https://doi.org/10.25088/ComplexSystems.32.2.139

https://doi.org/10.25088/ComplexSystems.32.2.139

with costly operations like multiplications along with Twist and Tem-
per. Hence, we choose not to use this approach. In fact, we propose

to select Temper+Twist on Output on CA (150′) (Figure 4(a)) with
seed 367 as the default seed as our PRNG for applications where non-
randomness due to linearity can be ignored. As per Conjecture 2 of

[8], this PRNG has a period length of 21409 - 1 and it passes all
Dieharder tests.

Nevertheless, our generator still cannot pass the Matrix Rank and
LinearComp tests of BigCrush. Further addition of any nonlinear
module to the generator is impractical as it hampers the efficiency and
speed. Therefore, we employ a totally different approach. As the root
cause of the problem may be the linearity of the CA rules, in the next
section we proceed to use a nonlinear CA.

Phase III: Search for a Nonlinear Maximal-Length

Cellular Automaton

5.

Until now, we have used a linear CA (recall that CA (150′) contains
only rules 90 and 150, both of which are linear rules) and externally
added nonlinearity. But this has not produced the desired result. So in
this section, instead of using a linear CA and adding nonlinear compo-
nents after it, we integrate nonlinearity inside the CA. However, the
challenge is finding an appropriate nonlinear CA that satisfies the
maximal-length property. For this, we use some existing theories from
[12, 13].

Greedy Strategy for Constructing a Potential Nonlinear
Maximal-Length Cellular Automaton

5.1

In [13], a technique is given to formulate a nonlinear CA from a
known linear maximal-length CA that has the potential to be a maxi-
mal-length CA. In this section, we use those strategies to create such a

potential nonlinear CA based on our selected CA (150′) by changing
only some of its rules. We know that maximal-length CAs are always
reversible. Hence, our first target is to ensure that this condition is sat-
isfied by the synthesized CA.

Synthesis of a Reversible Cellular Automaton 5.1.1

To synthesize an n-cell reversible CA based on CA (150′), the method-
ology of [12] is used. Here, all the balanced rules are divided into six
classes. Then, a rule-class relationship table is given that guides which
rules can be chosen as the rule for cell i + 1 from the class information
of the rule of cell i. For the sake of completeness, we reproduce

158 K. Bhattacharjee, N. More, S. K. Singh and N. Verma

Complex Systems, 32 © 2023

Table 8, which depicts the class information of the participating rule
ℛi, 0 ≤ i ≤ n - 1. Using this table, we update some of the cells’ rules
(having rule 150 by default) of our CA to nonlinear rules such that
the obtained CA is always reversible. Table 9 shows such a CA for
n  32.

(a) Class relationship of ℛi and ℛi+1.

Class of ℛi ℛi Class of ℛi+1

I 51, 204, 60, 195 I

85, 90, 165, 170 II

102, 105, 150, 153 III

53, 58, 83, 92, 163, 172, 197, 202 IV

54, 57, 99, 108, 147, 156, 198, 201 V

86, 89, 101, 106, 149, 154, 166, 169 VI

II 15, 30, 45, 60, 75, 90, 105, 120, I

135, 150, 165, 180, 195, 210, 225, 240

III 51, 204, 15, 240 I

85, 105, 150, 170 II

90, 102, 153, 165 III

23, 43, 77, 113, 142, 178, 212, 232 IV

27, 39, 78, 114, 141, 177, 216, 228 V

86, 89, 101, 106, 149, 154, 166, 169 VI

IV 60, 195 I

90, 165 IV

105, 150 V

V 51, 204 I

85, 170 II

102, 153 III

86, 89, 90, 101, 105, 106, VI

149, 150, 154, 165, 166, 169

VI 15, 240 I

105, 150 IV

90, 165 V

(b) First rule table.

Rules for ℛ0 Class of ℛ1

3, 12 I

5, 10 II

6, 9 III

Cellular Automaton–Based Emulation of the Mersenne Twister 159

https://doi.org/10.25088/ComplexSystems.32.2.139

https://doi.org/10.25088/ComplexSystems.32.2.139

(c) Last rule table.

Rule Class for ℛn-1 Rule Set for ℛn-1

I 17, 20, 65, 68

II 5, 20, 65, 80

III 5,17, 68, 80

IV 20, 65

V 17, 68

VI 5, 80

Table 8. Rules to generate a reversible CA.

No Blocking Word 5.1.2

In a maximal-length CA, all configurations except one are reachable
from one another. This indicates that the CA does not have any block-
ing word in it.

Definition 7. A subconfiguration s  (si)i∈j, j+k-1 of a configuration

c  (si)0≤i<n is a blocking word if for any t ≥ 1, Gn
t (c) i  si for each

i ∈ [j, j + k - 1], but Gn
t (c) l ≠ sl for some l ∉ [j, j + k - 1]. Here Gn is

the global transition function of the n-cell CA and 0 ≤ l < n [13].

To illustrate a blocking word, let us consider a CA (10, 90, 172,
150, 204, 20). For this CA, the subconfiguration 111 is a blocking
word when it is applied to the second through fourth cells. The chain
of configurations

001 110  011111  111 110  101 111  001110

forms a cycle of length four. Existence of a blocking word indicates
that the flow of information in the CA is blocked. Obviously, there is
no information flow from the first two cells (and from the last cell) to
other cells in this particular CA. The maximum possible cycle length

that can be formed by these configurations is bounded by 2n-k, where

k is the length of the blocking word (here n  6 and k  3). Further,
a configuration having a blocking word is always unreachable from
any configuration that does not have that particular word. For exam-
ple, the configuration 001010 cannot be reached from 001110 of the
given CA. Therefore, existence of such a blocking word ensures that
the CA is not a maximal-length CA.

Unique Single-Length Cycle 5.1.3

Once we ensure that our CA has no blocking word, we need to check
for the existence of a unique single-length cycle.

160 K. Bhattacharjee, N. More, S. K. Singh and N. Verma

Complex Systems, 32 © 2023

C
el
l
n
u
m
b
er

 (
i)

0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

R
i

1
0

1
5
0

1
5
0

1
5
0

1
5
0

8
6

1
5
0

1
5
0

1
5
0

1
5
0

1
5
0

1
4
9

1
5
0

1
5
0

1
5
0

1
5
0

C
la
ss

2
1

3
2

1
6

4
5

6
4

5
6

4
5

6
4

C
el
l
n
u
m
b
er

 (
i)

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

R
i

1
5
0

1
0
1

1
5
0

1
5
0

1
5
0

1
5
0

1
5
0

1
5
0

1
5
0

1
5
0

1
5
0

1
5
0

1
5
0

1
5
4

1
5
0

2
0

C
la
ss

5
6

4
5

6
4

5
6

4
5

6
4

5
6

4

Table 9. A sample nonlinear (potential) maximal-length CA following

Table 8 based on CA (150′). Nonlinear rules appear in bold.

Definition 8. A CA Gn forms a single-length cycle for a configuration x
if Gn(x)  x.

We can imagine a single-length cycle as a full-length blocking
word. In the case of a maximal-length CA, there is only one single-
length cycle. Therefore, if a CA has no or more than one single-length
cycle, then the CA is not a maximal-length CA [13].

Cellular Automaton–Based Emulation of the Mersenne Twister 161

https://doi.org/10.25088/ComplexSystems.32.2.139

https://doi.org/10.25088/ComplexSystems.32.2.139

Now we move on to develop our nonlinear CA that satisfies these
conditions. The following can be observed from Table 8:

The rule vector can have at most three consecutive nonlinear rules. 1.

The rule vector can have at most (⌊(n - 5) / 2⌋) + 3 nonlinear rules, and
the rest of the rules are chosen from the set of four rules: 90, 150, 105

and 165, where n ≥ 5. For our case, the first and last rules are 10 and
20, respectively (which are equivalent to applying rule 90 at the first
cell and rule 150 at the last cell for the null boundary condition), and
the rest of the rules are rule 150.

2.

Hence, while synthesizing, we consider these two criteria. Note
that it is highly likely that the CA developed in this way is of maximal
length, although there is no guarantee. An example of such a nonlin-

ear CA based upon CA (150′) is given in Table 9. Here, only four non-
linear rules are injected into the base CA to make it nonlinear.

Constructing Our Nonlinear Cellular Automaton 5.2

Our target is to find a nonlinear maximal-length CA of size 1409 that
has a good randomness quality. As there is no known foolproof
method to find such a CA, we take the greedy strategy mentioned in

the previous section. That means we take our CA (150′) as the base
CA and following Conditions 1 and 2, form a nonlinear CA using
Table 8 such that the CA is reversible, has no blocking word and has
a unique single-length cycle. However, there is no theoretical measure
known to check whether the CA synthesized in this way is of maxi-
mal length. The only way is to run the n-cell CA and see whether it

really has a cycle of length 2n-1.
Now, with current computational resources, checking the result on

a length of 1409 is an impossible task. So, we take another greedy
approach. Our strategy is to synthesize 32-bit CAs following the
aforementioned conditions and test whether these CAs have a good
randomness quality (in terms of performance in the Dieharder
testbed). Then we choose the ones that give the best result to be
repeated until length 1409. However, this cannot be a blind repetition
of 32 bits, but rather we have to be careful while applying the nonlin-
ear rules such that the conditions of reversibility, no blocking word
and unique single-length cycle are not violated. To maintain the sim-
plicity of code and computation, we take the occurrence of such non-
linear rules only at specific intervals that are multiples of six, though
the starting point of this pattern may vary.

While selecting a particular pattern and inserting a set of combina-
tions of nonlinear rules, each rule needs to be checked for whether it
is producing a blocking word in the CA. If the pattern does not give a
blocking word, it is then tested for the presence of a unique single-

162 K. Bhattacharjee, N. More, S. K. Singh and N. Verma

Complex Systems, 32 © 2023

length cycle. Different combinations of nonlinear rules of length 32
that are both nonblocking and give one single-length cycle are put to
the test on Dieharder. Out of all the CAs that are tested, a set of six
CAs that performed the best are shown in Table 10. We use these
patterns and extend them to a length of 1409. For example, in
the fourth row of Table 10), the CA has R0  10,
R5  R35  R65  ⋯  R1385  86, R11  R41  ⋯  R1391  149,
R17  R47  ⋯  R1397  101, R23  R53  ⋯  R1403  169,
R29  R59  ⋯  R1379  154, R1408  20 and Ri  150 for all
other i. These CAs have a good chance of being a nonlinear maximal-
length CA, though there is no guarantee.

Nonlinear Rules
Positions of Insertion in

Sequence Failed Test Results

86, 149, 101, 154, 169 regular interval of six cells
except the fourth and fifth,
which are applied in an

interval of 12

70 and 71

86, 149, 101, 154, 169 regular interval of six cells 70 and 71

86, 149, 101,169, 154 regular interval of six cells 71

86, 149, 101, 154 regular interval of six cells 71

86, 149, 101, 154 regular interval of six cells
except the last rule, which is
applied after 12 cells

71

154, 86, 86, 86, 86 regular interval of six cells 71

Table 10. BigCrush test results for different nonlinear CAs synthesized based

on CA (150′).

To choose a seed for this new generator, we once again follow the
same procedure of Section 4. Table 11 shows the best-performing
seed for these nonlinear CA-based generators. The new generator
works the same way as the linear CA-based PRNG developed in Sec-
tion 3. That is, each configuration produces 44 32-bit numbers that
are tempered using the same tempering function. We then put them to
rigorous testing on Dieharder, NIST and BigCrush of the TestU01
library using this seed. If not otherwise mentioned, this seed is set as
the default for the nonlinear PRNG and the seed number 367
(Table 4) as the default for the PRNGs of Sections 3 and 4.

Cellular Automaton–Based Emulation of the Mersenne Twister 163

https://doi.org/10.25088/ComplexSystems.32.2.139

https://doi.org/10.25088/ComplexSystems.32.2.139

11100111100110000110101010001100110111000101001110101001100
01101011100010011000111011000000111110011010001100100011010
00100111111010100000111000111001011101111000111000100110100
01101010011110011011101010111001100001010110001011110011001
00110111011000000010101001111101001001010010111110000011100
11111000010000110011011001001011110001011100111001010011000
00011010010111100000101001111111000111010111101101001000110
00011010000000111100010011100111110100111100010101001111010
00110001111011010001010101101010001110010010110000010101011
01011010010111101110110100011111000001000110010110010011101
11000100111001100010001100001101011111100011000111011101000
01101101100000110100101101101001111011010101000000110101001
01101000001011000110010111111011010011011000101101010100101
01110111000100010000011111010101011111111110001000010000101
01011000100011000101101001011100101101110011000000110100010
01111100111110001101101111110000101011100000000010111110011
10100100101110001100111011011000100000110001110111011101001
01000101001101001011101111101010001011100001000110010111101
00001110101111000010011001011011111101011100000001010101000
11100001011001100110011011000101101110100001011100101000111
01001100101000110011111101010111000000100010100000111100101
11000111110111000001101000111111100100110011010101100101110
01100100011000101110011111100110000000110011100111000001101
0001111010011100110010010011111100000010101011111000

Table 11. Selected seed for nonlinear PRNGs of Table 10.

Results and Comparison 5.3

We first test our PRNG with the Dieharder testbed and see that it also
passes all tests for 1.2GB; we do not include this result as a table.
Next, the NIST test is applied to all versions of our PRNGs developed
so far and the MT family. Table 12 reports these results.

PRNG Failed Test

MT19937 NIL

SFMT19937 NIL

TinyMT rank test

CA (150′) + Temper rank test

CA (150′) + Temper + Twist (both approaches) rank test

CA (150′) + Temper + Twist + XOR + Multiply 1 (Rank Test) rank test

Nonlinear PRNGs NIL

Table 12. Consolidated results on NIST for all PRNGs.

164 K. Bhattacharjee, N. More, S. K. Singh and N. Verma

Complex Systems, 32 © 2023

In Table 12, we can observe that TinyMT and the previous
versions of PRNG fail the rank test of the NIST statistical test suite.
However, our final nonlinear PRNG as well as MT19937 and
SFMT19937 pass all tests of NIST. Therefore, this new PRNG is on
par with the MT family with respect to NIST.

Finally, we apply the BigCrush test on these new generators. This
result is depicted in Table 10. Here, test numbers 70 and 71 are
Matrix Rank, with r  15, s  15 and r  0, s  30, respectively. We
can observe that except for the first two CAs, the next four CAs pass
all BigCrush tests except test number 71. This is even better than the
performance of all versions of the MT family (see Table 13 for the
detailed comparison of results). Among these four CAs, we propose
to choose the CA with nonlinear rules 86, 149, 101, 154 applied at a
regular interval of six cells as our default PRNG. An implementation
of this PRNG along with the linear versions is publicly available in
GitHub [14].

Cellular Automaton–Based Emulation of the Mersenne Twister 165

https://doi.org/10.25088/ComplexSystems.32.2.139

https://doi.org/10.25088/ComplexSystems.32.2.139

O
u
r
F
in
al

 N
o
n
li
n
ea
r
P
R
N
G

M
T
1
9
9
3
7
 a
n
d
 S
F
M
T
1
9
9
3
7

T
in
y
M

T

T
es
t

N
u
m
b
er

T
es
t
N
am

e

T
es
t

N
u
m
b
er

T
es
t
N
am

e

T
es
t

N
u
m
b
er

T
es
t
N
am

e

T
es
t

N
u
m
b
er

T
es
t
N
am

e

7
1

M
at
ri
x
 R
an

k
,
r


0
,
s


3
0

8
0

L
in
ea
rC

o
m
p
,
r


0

8

C
o
ll
is
io
n
O
v
er
,
t


7

6
9

M
at
ri
x
 R
an

k
,
L


1
0
0
0
,
r


2
6

8
1

L
in
ea
rC

o
m
p
,
r

2
9

1
0

C
o
ll
is
io
n
O
v
er
,
t


1
4

7
0

M
at
ri
x
 R
an

k
,
r


1
5
,
s


1
5

1
2

C
o
ll
is
io
n
O
v
er
,
t


2
1

7
1

M
at
ri
x

 R
an

k
,
r


0
,
s


3
0

1
9

B
ir
th
d
ay
Sp

ac
in
gs
,
t


8

8
1

L
in
ea
rC

o
m
p
,
r


2
9

2
1

B
ir
th
d
ay
Sp

ac
in
gs
,
t


8

8
7

L
o
n
ge
st
H
ea
d
R
u
n
,
r


2
7

2
7

S
im

p
P
o
k
er
,
r


2
7

1
0
2

R
u
n

 o
f
b
it
s,

 r


2
7

5
8

A
p
p
ea
ra
n
ce
Sp

ac
in
gs
,
r


2
7

Table 13. Updated comparison table using BigCrush of TestU01. Only failed
tests are shown.

166 K. Bhattacharjee, N. More, S. K. Singh and N. Verma

Complex Systems, 32 © 2023

It can be easily concluded from these tables that our nonlinear CA-
based PRNG outperforms all its competitors: MT19937, TinyMT
and SFMT19937 on TestU01. It also performs equal to or better than
the MT family on Dieharder and NIST, in accordance with which, we
can say that our PRNG is the best PRNG among all.

Conclusions and Next Steps 6.

Our target in this paper is to see if simple two-state three-neighbor-
hood cellular automata (CAs) that have only local interaction can out-
perform the strongest pseudorandom number generator (PRNG) like
the Mersenne Twister (MT) family. The approach we have taken is to
work in the same way as the MT and see how far we can go. We
started with a very simple, almost uniform cellular automaton (CA),

known as CA (150′) and developed PRNGs using it over cell length
n  1409 (i.e., 3244 + 1). That means, similar to the MT, our gener-
ators also produce a group of numbers (here 44 32-bit numbers)
together with only one bit of wastage per configuration. We have
applied the same tempering function of MT19937 to scatter the num-
bers generated as part of a CA configuration. We have observed that

if we apply a Twist function like MT19937, our CA (150′)-based
PRNG can pass all Dieharder tests, which is even better than its peers
MT19937 and SFMT19937.

However, this version of the PRNG fails some BigCrush tests that
detect nonlinearity in the system. To address this, we move on to

inject nonlinear rules into our base CA (150′), making it nonlinear
while preserving some conditions such that it has the potential to be a
nonlinear maximal-length CA. On this newly synthesized nonlinear
CA, we apply the tempering function of MT19937 to develop our
final PRNG. This PRNG also produces 44 32-bit numbers from a sin-
gle configuration. This PRNG was tested with the default seed for the
PRNG on Dieharder, NIST and TestU01 of the BigCrush library. It
can be seen that our PRNG beats the MT and all its peers in terms of
randomness quality and simplicity, passing every test of Dieharder
and NIST with only one failed test in BigCrush.

This shows that such a simple CA can also beat the strongest
PRNG developed so far. Also, it shows the power of nonlinear
maximal-length CAs even if only a tiny amount of nonlinearity is
added to the base linear maximal-length CA. Since we have not been
able to completely explore the vast world of possible nonlinear CAs,
we believe some nonlinear maximal-length CAs may be identified that
can pass all empirical testbeds even without the need of tempering.

Cellular Automaton–Based Emulation of the Mersenne Twister 167

https://doi.org/10.25088/ComplexSystems.32.2.139

https://doi.org/10.25088/ComplexSystems.32.2.139

Furthermore, many other CAs similar to CA (150′) can be investi-

gated (e.g., CA (90′) of [8]), which may have a similar quality. As bit-
wise operations are possible for these simple CAs, work may be
directed to use them as parallel random number generators, which the
current parallel computing environment is in dire need of.

Acknowledgments

This work is partially supported by Start-up Research Grant (File
number: SRG/2022/002098), SERB, Department of Science & Tech-
nology, Government of India and NIT, Tiruchirappalli SEED Grant.
We are grateful to Prof. Sukanta Das for his continuous encourage-
ment, valuable comments, guidance and support for completing this
work.

References

[1] M. Matsumoto and T. Nishimura, “Mersenne Twister: A 623-dimen-
sionally Equidistributed Uniform Pseudo-random Number Generator,”
ACM Transactions on Modeling and Computer Simulation, 8(1), 1998
pp. 3–30. doi:10.1145/272991.272995.

[2] M. Saito and M. Matsumoto, “SIMD-Oriented Fast Mersenne Twister:
A 128-bit Pseudorandom Number Generator,” Monte Carlo and Quasi-
Monte Carlo Methods 2006 (A. Keller, S. Heinrich and H. Niederreiter,
eds.), Berlin, Heidelberg: Springer-Verlag, 2008 pp. 607–622.
doi:10.1007/978-3-540-74496-2_36.

[3] K. Bhattacharjee and S. Das, “A Search for Good Pseudo-random Num-
ber Generators: Survey and Empirical Studies,” Computer Science
Review, 45, 2022 100471. doi:10.1016/j.cosrev.2022.100471.

[4] M. Saito and M Matsumoto, “A High Quality Pseudorandom Number
Generator with Small Internal State,” IPSJ SIG Notes, 3, 2011 pp. 1–6.

[5] R. G. Brown, D. Eddelbuettel and D. Bauer. “Dieharder: A Random
Number Test Suite.” (Jul 11, 2023)
webhome.phy.duke.edu/~rgb/General/dieharder.php.

[6] P. L’Ecuyer and R. Simard, “TestU01: A C Library for Empirical Test-
ing of Random Number Generators,” ACM Transactions on Mathemati-
cal Software, 33(4), 2007 pp. 1–40. doi:10.1145/1268776.1268777.

[7] S. Wolfram, “Origins of Randomness in Physical Systems,” Physical
Review Letters, 55(5), 1985 pp. 449–452.
doi:10.1103/PhysRevLett.55.449.

168 K. Bhattacharjee, N. More, S. K. Singh and N. Verma

Complex Systems, 32 © 2023

https://doi.org/10.1145/272991.272995
https://doi.org/10.1007/978-3-540-74496-2_36
https://doi.org/10.1016/j.cosrev.2022.100471
https://webhome.phy.duke.edu/~rgb/General/dieharder.php
https://doi.org/10.1145/1268776.1268777
https://doi.org/10.1103/PhysRevLett.55.449

[8] S. Adak and S. Das, “(Imperfect) Strategies to Generate Primitive Polyno-
mials over GF(2),” Theoretical Computer Science, 872, 2021 pp. 79–96.
doi:10.1016/j.tcs.2021.03.007.

[9] K. Bhattacharjee, N. More, S. K. Singh and N. Verma, “Emulating
Mersenne Twister with Cellular Automata,” in Proceedings of First
Asian Symposium on Cellular Automata Technology, Kolkata, India
(S. Das and G. J. Martinez, eds.), Singapore: Springer Nature, 2022
pp. 95–108. doi:10.1007/978-981-19-0542-1_8.

[10] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Lev-
enson, et al., A Statistical Test Suite for Random and Pseudorandom
Number Generators for Cryptographic Applications, Gaithersburg,
MD: National Institute of Standards and Technology, U.S. Department
of Commerce, 2010.
csrc.nist.gov/publications/detail/sp/800-22/rev-1a/final.

[11] G. Marsaglia. “DIEHARD: A Battery of Tests of Randomness.” (Jul 11,
2023) stat.fsu.edu.

[12] S. Das, “Theory and Application of Nonlinear Cellular Automata in
VLSI Design,” Ph.D. thesis, Bengal Engineering and Science University,
Shibpur, India, 2007.

[13] S. Adak, “Maximal Length Cellular Automata,” Ph.D. thesis, Indian
Institute of Engineering Science and Technology, Shibpur, India, 2021.

[14] K. Bhattacharjee and S. Das. “PRNG Library.” (Jul 11, 2023)
github.com/kamalikaB/PRNG-library/tree/main/CA/MTbyCA150'.

Cellular Automaton–Based Emulation of the Mersenne Twister 169

https://doi.org/10.25088/ComplexSystems.32.2.139

https://doi.org/10.1016/j.tcs.2021.03.007
https://doi.org/10.1007/978-981-19-0542-1_8
https://csrc.nist.gov/publications/detail/sp/800-22/rev-1a/final
http://stat.fsu.edu/~geo/diehard.html
https://github.com/kamalikaB/PRNG-library/tree/main/CA/MTbyCA150'
https://doi.org/10.25088/ComplexSystems.32.2.139

