UNIVERSITE DU
LUXEMBOURG

PhD-FSTM-2020-43
The Faculty of Sciences, Technology and Medicine

DISSERTATION

Defence held on 24/09/2020 in Esch-sur-Alzette

to obtain the degree of

DOCTEUR DE L’UNIVERSITE DU LUXEMBOURG

EN INFORMATIQUE
by

Daniel FEHER
Born on 5 March 1993 in Miskolc, (Hungary)

DATA ANALYTICS AND CONSENSUS MECHANISMS
IN BLOCKCHAINS

Dissertation defence committee

Dr Alex Biryukov, dissertation supervisor
Professor, Université du Luxembourg

Dr Paulo Esteves-Verissimo, Chairman
Professor, Université du Luxembourg

Dr Volker Miiller, Vice Chairman

Associate Professor, Université du Luxembourg

Dr Rainer Bohme
Professor, Universitdt Innsbruck

Dr Ghassan Karame
Head of Security Research, NEC Laboratories Europe

Abstract

Blockchains, and especially Bitcoin have soared in popularity since their
inceptions. This thesis furthers our knowledge of blockchains and their uses.

First, we analyze transaction linkability in the privacy preserving cryptocur-
rency Zcash, based on the currency minting transactions (mining). Using pre-
dictable usage patterns and clustering heuristics on mining transactions, an
attacker can link to publicly visible addresses in over 84% of the privacy pre-
serving transactions

Then, we further analyze privacy issues for the privacy-oriented cryptocur-
rency Zcash. We study privacy preserving transactions and show ways to finger-
print user transactions, including active attacks. We introduce two new attacks,
which we call the Danaan-gift attack and the Dust attack.

Then, we investigate the generic landscape and hierarchy of miners as ex-
emplified by Ethereum and Zcash. Both chains used application-specific inte-
grated circuit (ASIC) resistant proofs-of-work which favor GPU mining in order
to keep mining decentralized. This, however, has changed with the introduction
of ASIC miners for these chains. This transition allows us to develop methods
that might detect hidden ASIC mining in a chain (if it exists), and to study
how the introduction of ASICs affects the decentralization of mining power. Fi-
nally, we describe how an attacker might use public blockchain information to
invalidate miners’ privacy, deducing the mining hardware of individual miners
and their mining rewards.

Then, we analyze the behavior of cryptocurrency exchanges on the Bitcoin
blockchain, and compare the results to the exchange volumes reported by the
same exchanges. We show, that in multiple cases these two values are close to
each other, which confirms the integrity of their reported volumes. Finally, we
present a heuristic to try to classify large clusters of addresses in the blockchain,
and whether these clusters are controlled by an exchange.

Finally, we describe how to couple reputation systems with distributed con-
sensus protocols to provide a scalable permissionless consensus protocol with a
low barrier of entry, while still providing strong resistance against Sybil attacks
for large peer-to-peer networks of untrusted validators. We introduce the repu-
tation module ReCon, which can be laid on top of various consensus protocols
such as PBFT or HoneyBadger. The protocol takes external reputation rank-
ing as input and then ranks nodes based on the outcomes of consensus rounds
run by a small committee, and adaptively selects the committee based on the
current reputation.

Acknowledgements

This dissertation would not be possible without the support and help from
many people. First of all, I would like to thank my supervisor, Prof. Alex
Biryukov, for leading my research and providing me with the freedom to choose
many topics. I would like to thank my thesis supervision committee members,
Prof. Paulo Esteves Verissimo, and Prof. Volker Miiller, for following my
research and giving valuable advice. I am grateful to Prof. Rainer Bohme and
to Dr. Ghassan Karame for agreeing to serve on my defense as jury members.

I would like to thank the University of Luxembourg and the Interdisciplinary
Centre for Security, Reliability and Trust for providing me an excellent research
environment.

I am thankful to all my colleagues at CryptoLUX and at the University
for the happy years and the countless conversations we had during our coffee
breaks.

My greatest gratitude is to my family and friends who have always supported
me in every decision I took in my life.

Contents

Abstract

Acknowledgements

List of Figures

List of Tables

List of Abbreviations

1 Introduction

I

2

1.1

1.2

1.3
1.4

1.5

Currencies
1.1.1 Main Challenges of Digital Currencies
1.1.2 Digital Currencies

Bitcoin
1.2.1 Transaction Structure
1.2.2 Blocks

1.2.3 Proof-of-Work Protocol
1.2.4 Mining Hardware,
1.2.,5 Mining Pools oo
1.2.6 Network Communication
1.2.7 Security of Bitcoin 0oL
1.2.8 Advantages and Disadvantages
1.2.9 Main Actors in Bitcoin00
Scalability of Cryptocurrencies
Privacy in Cryptocurrencies
1.4.1 Privacy-oriented Cryptocurrencies
Contributions

Data Analytics in Blockchains

Deanonymizing Miners in Zcash

2.1

2.2
2.3
24

Zeash . o Lo
2.1.1 Notation
Analytics tool for Zcash
Related Worko
Deanonymizing The Miners
2.4.1 Pattern T Mining Pools
2.4.2 Pattern Z Mining Pools

vil

iii

xi

xiii

>
<

=T N NG Oy e

viii

2.4.3 Results of the Heuristics
2.4.4 Accuracy of the Heuristics
2.4.5 Comparison of results to previous work
2.4.6 Inflation of results
2.5 Summary and Conclusions

Further Transaction Linking in Zcash
3.1 Linking with Transaction Values
3.1.1 Direct Value Linking Including Transaction Fees
3.1.2 Subsetsum
3.1.3 Fingerprinted Values
3.1.4 Further Results
3.2 The Model for the Probability of Fingerprint Survival
3.2.1 Experimental results 0000
3.22 Notation
3.2.3 Sapling Transactions Dataset
3.3 Danaan-Gift Attack (Malicious Value Fingerprinting)
3.4 Dust Attack
3.4.1 Official Linux Command-line Zcash Wallet
3.4.2 GUlI-based Sapling-supporting Wallets
3.4.3 Combining Danaan and Dust Attacks
3.5 Usage of zk-SNARKs
3.5.1 Interaction Between Sapling and Sprout Transactions . .
3.6 Summary and Conclusions

Privacy of Miners in Zcash and Ethereum
4.1 Terminology
4.2 Background and Related Work
4.3 Mining Landscape L.
4.3.1 Ethereum
4.3.2 Zcash
4.3.3 GPUMining o
4.3.4 GPU vs ASIC mining
4.4 Detecting ASIC miners
4.4.1 Fraction of large miners in the mining power
4.4.2 Mining Software Developer Fees
4.4.3 Public Introduction of ASICs
4.5 Mining Centralization
4.6 Privacy of Minerso
4.6.1 Linkability of Mining rewards
4.6.2 Countermeasures
4.7 Summary and Conclusions

Estimating Exchange Traffic

5.1 Evaluating Identified Clusters
5.2 Classifying Large Clusters
5.3 Summary and Conclusions

37
37
38
39
39
41
42
44
44
45
48
49
50
50
51
51
51
52

53
54
55
95
o6
57
58
60
60
60
61
63
64
65
65
66
67

II Consensus Protocols in Blockchains

6 ReCon
6.0.1

Related Work

6.1 Existing Consensus Protocols

6.1.1
6.1.2
6.1.3
6.1.4

Proof-of-Work
Proof-of-Stake o
Byzantine Agreement
Hybrid Protocols

6.2 Preliminaries of Our Protocol

6.2.1
6.2.2
6.2.3

Generic
Assumptions. o
Nodes e

6.3 Reputation module

6.3.1
6.3.2
6.3.3
6.3.4
6.3.5
6.3.6
6.3.7
6.3.8
6.3.9
6.3.10

External Reputation
Committee selection
Rewards and penalties
Probability of a forgery
Typesof Blocks
Source of randomness
Fairness
Dealing with forks
Convergenceo
Pseudocode

6.4 Simulation Results

6.4.1
6.4.2
6.4.3

External reputation: discrete (no information)
External reputation with normal distribution
External reputation with exponential distribution

6.5 Attacks and their mitigation

6.5.1
6.5.2
6.5.3
6.5.4
6.5.5
6.5.6

Botnet takeover
Sybil attack: saturation L.
Sybil attack: lie and wait strategy
Attacks on randomness
Honest majority L.
Detection based on the successrate

6.6 Summary and Conclusions

7 Summary and Conclusions
7.1 Future Works

X

79

81
83
83
83
85
85
86
87
87
88
89
89
90
91
92
93
95
96
96
97
97
98
98
99
100
101
101
101
102
102
102
103
103
103

105

pal

List of Figures

1.1
2.1
3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18

0.1
0.2

2.3

5.4

6.1
6.2
6.3

Example for the transaction structure of Bitcoin.)
Zcash Sapling Turnstile. 26
Average output distance until a fingerprint stays unique. 42
Histogram of hash rates in Ethereum for the GTX 1050 GPU . 56

Histogram of hash rates in Ethereum for the GTX 1060 GPU . 56
Histogram of hash rates in Ethereum for the GTX 1070 GPU . 56

Histogram of hash rate in Ethereum for the RX 580 GPU 56
Histogram of hash rates in Zcash for the GTX 1050 GPU 57
Histogram of hash rates in Zcash for the GTX 1060 GPU 57
Histogram of hash rates in Zcash for the GTX 1070 GPU 57
Histogram of hash rates in Zcash for the GTX 1080 GPU 57
Overall Equihash mining power over time. 59
Sum of total power of (formerly) GPU-mined blockchains. . . . 60
Profitability of mining in USD. 61
Estimated portion of large miners. 62
Lower bound of GPU mining power. 63
Change in the projected mining power. 64
Change of power distribution in mining pools. 64
Number of daily recorded miners. 65
Histogram of recorded hash rates in Zcash. 66
Example of tracking a single miner. 67

Poloniex’s reported and chain traffic for the entire 701 day period. 71
Bitstamp’s reported and chain traffic for the best matching 61

day period 75
Kraken’s reported and chain traffic for the best matching 61 day

period 76
LocalBitcoins’ reported and chain traffic for the best matching

61 day period 76
The reputation curve after 10,000 rounds. 91
Exponential Distribution. 96

Exponential Power Distribution. 96

xiil

List of Tables

1.1

2.1
2.2
2.3

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1
4.2
4.3

0.1

0.2

2.3

5.4
6.1
6.2
6.3
6.4
6.5
6.6

6.7
6.8

The structure of a Bitcoin block. 6
Transaction types in Zcash. 25
Results of the heuristics 33
Comparison of results with related work. 34
Number of unique fingerprints 40
Number of equal in/out value pairs. 42
Number of possible fingerprint pairs. 43
Number of transactions after each corresponding dataset update. 47
The transaction distribution of the final dataset. 47
The relevant z-to-z and z-to-t transactions where coins stay shielded. 48
The relevant z-to-t transactions where some coins are revealed. . 48
Sapling zk-SNARK usage 51
Number of times a card has appeared in Ethereum o7
Hash rates and their hardware counterparts 58
Number of times a card has appeared in Zcash. 58

The four highest correlation values between the reported and

observed on the chain data over 701 days 72
The correlation values between the reported daily exchange vol-
ume between a selected set of exchanges 72
Exchanges from Table 5.1 and the highest correlation pair among
all inspected exchanges oL 72

The categorization of large clusters based on different time spans 77

The protocol parameters 90
The A security parameters and the corresponding p values. . . . 94
The A security parameters and the corresponding percentage of
successful rounds.o Lo 94
No external reputation, exponential selection rule: success rates
after 10,000 rounds. 100
No external reputation, triangular selection rule: success rates
after 10,000 rounds. Lo 100
External normally distributed reputation, exponential selection
rule: success rates after 10,000 rounds. 100

External normal distribution, selection with triangular distribution.100
External exponentially distributed reputation, exponential selec-
tionrule. 101

X1v

6.9 External exponential distribution, selection with triangular dis-
tribution. Lo

XV

List of Abbreviations

PoW Proof of Work

PoS Proof of Stake

BA Byzantine Agreement

BFT Byzantine Fault Tolerance

P2P Peer-to-Peer

CPU Central Processing Unit

GPU Graphics Processing Unit
FPGA Field Programmable Gate Array
ASIC Application-Specific Integrated Circuit
UTXxO Unspent Transaction Output
ZK Zero-Knowledge

zk-SNARK Zero-Knowledge Succinct Arguments of Knowledge
VDF Verifiable Delay Function

Chapter 1

Introduction

What is a blockchain? What is Bitcoin? Will it change how we think about
money? Is it as private as cash? Such questions are asked these days about
cryptocurrencies. Currently, there is no scientific consensus on most of the
overarching questions, for example, will everybody use some form of blockchain
in the near or far future? This doctoral thesis will try to answer a few of the
questions that arise with our current cryptocurrencies and techniques.

Specifically, this thesis will explain and expand on the following subjects that
are all focused on blockchains. First, we will provide an in-depth introduction
to Bitcoin’s workings as the original ancestor of all later blockchain technology.
Then, we will shift our focus to a cryptocurrency called Zcash, which focuses on
its users’ privacy. We will describe how it tries to achieve its privacy guarantees.
We will show novel techniques that weaken the built-in privacy of the blockchain,
reducing its effectiveness to a level similar of Bitcoin. We will expand our
privacy focused research with data analytical observations on Zcash and other
cryptocurrencies.

Finally, we introduce consensus protocols and describe a novel approach to
reach agreement among the participants of a blockchain protocol. However, in
order to present this novel research, the history and functioning of Bitcoin will
be elaborated.

1.1 Currencies

In the early days of civilization, humanity used barter for exchanging prod-
ucts between different families or tribes. As civilizations evolved, the idea of
a medium of exchange has emerged for these trades. The goal of this interme-
diary step was to reduce the restriction of available goods, as there were cases
where the two trading parties did not need any of the other’s products. These
later evolved into currencies, which had some essential features of their own. A
currency or a coin became a store of value, and were usually based on some pre-
cious metals. Later on, with the devaluation and the weight of coins, using them
became less practical. In turn, traders started to use written trade guarantees
during exchanges. These guarantees were exchangeable for actual products in
larger cities and banks, and were one of the ancestors of banknotes. Later, in
Europe traders have started operating with private bank provided legal tenders
of coin deposits, which were another originators of banknotes. Banknote based
currencies have also developed in other places, most notably in China in the

2 Chapter 1. Introduction

11th century, on similar principles. These notes over time have evolved into
the ones we use today. Until recently, in most countries the banknotes were
theoretically convertible to gold or silver in an authorized bank, as they were
partially backed by them.

The last step for our current monetary system came in 1971 when United
States President Richard Nixon has canceled banknotes’ direct conversion to
gold, introducing the United States to a fiat currency model. In fiat currencies,
the currency itself does not hold any value. Instead, its value is backed directly
by a government, but without any tangible value. The United States was one
of the last major economies to switch to the fiat model, and currently, almost
all of the world’s monetary systems are fiat currencies.

Parallel to these changes, we also saw the rise of electronic payments. The
mainstream spread of credit cards first advanced this change. In some countries
like Sweden [Rik] in 2018, only 13% used cash in their last physical purchase,
and Sweden is planning to go completely cashless by 2023. Even though elec-
tronic payments provide plenty of advantages over cash, mainly in their ease of
use, there are some disadvantages. The most argued problem is that all trans-
actions go through banks or credit card companies, and payments lose their
privacy compared to cash. Furthermore, the issuer of a card or electronic pay-
ment service provider can block access at any time or deny certain transactions,
creating possibilities for censorship against their users. Thus the users have to
blindly trust these providers, while in cash-based systems, such censorship is
not possible.

The evolution of the internet, computer science and the previously men-
tioned issues have lead to some researchers exploring the idea of digital cur-
rencies that are independent from fiat-currencies. Here are some of the main
challenges for a digital currency.

1.1.1 Main Challenges of Digital Currencies

There are multiple technical issues that digital currencies need to solve before
they become a usable currency.

1.1.1.1 Consensus

Consensus is one of the leading research areas in distributed systems. It refers
to the fact that all honest - well-behaved - participants of a protocol agree with
the result of some operation. For example, in a monetary system, among other
issues, whether all honest participants agree on the correct transactions, how
much currency each user has, or whether the users can spend their currency.
The complete problem is the following. Let us assume some nodes com-
municate over an untrusted channel - an outside observer can listen, modify,
halt or delete messages on the channel - and try to reach some form of agree-
ment. Can the honest nodes achieve agreement if some of the nodes can be
malicious? The problem has been researched actively since the early 80s when
researchers introduced the so-called Byzantine Generals Problem [LSP82] and
related challenges. The original Byzantine General problem is the following.
Three Byzantine armies are preparing for battle against a common foe. They

1.1. Currencies 3

can only win the battle if all of them attack at the same time. On the other
hand, the generals of these armies can not meet in person as they are in enemy
territory, and can only communicate through messengers between the armies.
How can the generals agree on the time of the attack and make sure that the
other generals have confirmed the time of the attack?

Furthermore, any of the generals can act maliciously by sending confirmation
to one while sending disagreement to another general, among other acts. Finally,
the communication channel, i.e., the messenger can not be trusted either, as it
can be captured on the way or changed to a different messenger with a different
message in hand.

With these restrictions the question is what assumptions one has to make
that agreement is possible and to verify that agreement, i.e., time of the attack.
It is evident that if more than 50% of the generals are malicious, then the honest
nodes can not achieve agreement. [LSP82] shows that if there are N nodes, then
the number of malicious nodes can not exceed L%J

There are existing solutions to this consensus problem ([CL99, AMQ13])
with different assumptions, but most of them are only practical for a handful of
participants. We will refer to these protocols as classical Byzantine consensus.
These protocols are usually voting-based, where every node has an equal vote
on proposed operations, whether they approve those operations. However, a
real digital currency would be open and allow anybody to join the protocol,
which would lead to thousands and thousands of participants, something that
classical Byzantine consensus protocols can not process.

1.1.1.2 Double-Spending

Another important problem in a digital currency is the issue of double-spending.
Double-spending is the act of spending the same currency twice. In the real
world, it could mean spending the same banknote in two different places at the
same time. In a digital system a direct example would be the following. Let
us assume there are ten coins in an account. A user tries to buy two separate
items, each worth ten coins. If the user can get both items by starting both
transactions simultaneously, while the monetary authority did not realize it is
spending the same coins twice, it can double-spend its coins and get both items.

1.1.1.3 Sybil-Attack

A Sybil attack [Dou02] is when a malicious actor joins a network with a large
number of nodes or users, trying to swarm and take control of a system. They
are most damaging in reputation or rating based platforms, where an attacker
can create thousands of fake users to boost the reputation of an entity or the
rating of an item. An attacker can use Sybil-attacks in consensus protocols as
well. Open public voting-based agreement protocols - like classical Byzantine
consensus protocols - do not have any defense against these attacks, which is
one of their most significant issues in their deployment in a broader, more open
ecosystem.

4 Chapter 1. Introduction

1.1.2 Digital Currencies

The idea of digital currencies has been under consideration since 1983 when
David Chaum introduced the term digital cash in his research paper [Chag2].
Later, in 1990 he founded his own company called DigiCash using the same
underlying technology for digital payments. The company filed for bankruptcy
in 1998.

In 1997 Adam Back introduced HashCash [Bac02]. It further improved
on the original idea by Dwork and Naor [DN92], that required some non-
precomputable challenge from a sender to combat junk mail. It was the first
protocol to use hash functions as a proof-of-work protocol, which provided both
the moderately hard function to compute from the prover and very fast verifi-
cation from the verifier.

In 1998 Wei Dai proposed B-Money [Dai98], which was the first digital
currency that used a proof-of-work protocol as a money minting procedure. It
also used asymmetric cryptography, namely the public keys of users as their
identifiers, and every user would keep track of the value balances of the other
users.

Then in 2005, Nick Szabo proposed Bit Gold [Sza05], which was the direct
predecessor to Bitcoin. It utilized the proof-of-work protocol but only as a
safety mechanism. For consensus between users, it relied on voting protocols,
which were susceptible to Sybil-attacks.

These developments were followed by Satoshi Nakamoto launching Bitcoin [Nak(9]
in 2009.

1.2 Bitcoin

Bitcoin [Nak09] was first introduced to the world in 2009, under the pseudonym
Satoshi Nakamoto. To this day, there is no clear candidate for the real author
behind the work. Initially, Bitcoin was deemed an interesting, novel digital cur-
rency, but an infeasible approach to solving the problem of consensus among
a large number of nodes. The main issue with it was its probabilistic nature,
which many considered impractical in a real life setting. However, Bitcoin has
shown that such a probabilistic consensus is in fact viable and much more effec-
tive than deterministic algorithms. As such, the major innovation it provided
was the Proof-of-Work (PoW) consensus protocol. In order to present the PoW
protocol, we have to present how transactions function in Bitcoin.

1.2.1 Transaction Structure

Bitcoin does not use a standard account and balance based approach. Instead,
it utilizes a so-called unspent transaction output (UTXO) format. The idea
behind the format is the following. There are no accounts or balances, only
transaction outputs. These transaction outputs are tied to a public key in an
RSA type public-key infrastructure [DH76, RSA78, IMVO1].

We are not going to describe public key cryptography in detail, but we will
introduce the main principles. In a public-key encryption scheme, there are two

1.2. Bitcoin 5

types of keys, the public (K,,,) and private or secret (K,..) key, respectively,
and they represent a specific entity. The public key is known by everybody in
the network, while this specific entity is the only one to know the private key.
Then a public key encryption scheme is the following:

D(E(m7 Kpub)7 Ksec) = D(E(m, Ksec>7 Kpub) =m

where F is the encryption, D is the decryption function and m is the message

(1.1)

We refer to these types of encryption protocols as asymmetric cryptographic
ciphers, as they use a different key for encryption and decryption. Then, if we
have such a public key signature scheme, one can introduce digital signatures
as a cryptographic protocol, which ties a message m to an entity X, meaning
the message was signed by somebody who has control of X’s private key. The
signature can be verified using the message m and the public key of X.

In Bitcoin, transaction outputs are tied to such public keys, and when we
refer to an address, we refer to the public key of the output. There can be
multiple outputs tied to the same public key. Every such output has a value
as well, which is the coin value of it in the blockchain. If a user wants to
use and spend the value in an output, it has to digitally sign the output with
its private key. Then it has to create a transaction where the inputs of the
transaction become these previous outputs that the user is trying to spend.
Then the transaction consumes the chosen old outputs and their value, and in
the outputs section of the transaction it can create new outputs tied to any
known public key up to the sum of values of the inputs. The miner of the block
can claim the remaining unused input as the transaction fee. Then these new
outputs of the transaction become part of the UTXO set, and the input outputs
of the transaction become flagged as spent (Figure 1.1).

Transaction 1 Transaction 2
(Oufput)1 ABTC |
2 BTC i 1.5 BTC
7777777777777 { Input 1] [Output 2}\‘\(}_‘5\]‘3‘TC [Output l}f””””f”»
0.5 B\f(}\\

£2

FIGURE 1.1: An example for the transaction structure of Bitcoin. See that the out-
put of a transaction is then the input of a later transaction, chaining all transactions
together.

Furthermore, when a user is creating a transaction, there can be multiple
public keys in the input part as well. This also means that the creator of the
transaction knows the private keys to all the public keys in the input field, or in

6 Chapter 1. Introduction

other words, the creator has full control over all the input addresses. In Bitcoin
these transactions are bundled into blocks.

1.2.2 Blocks

Let us describe in detail the attributes and features of a block in Bitcoin. Blocks
are the main building elements of Bitcoin, as the confirmed transactions are
spread over the network using these blocks. The Bitcoin protocol enforces a
1MB maximum block size in order to limit the network traffic between users.
A block’s structure can be seen in Table 1.1.

’ Field ‘ Description ‘
A fixed value, that is used in computer science
. to describe the type of data following this magic
Magic Number number. A Bitcoin block’s magic number is
”0xD9B4BEF9”.
. The exact size of the entire block in number of
Blocksize
bytes.
The blockheader of a Bitcoin block consists of
Blockheader six further fields. Described in the following sec-
tion 1.2.2.1.
Transaction Counter The exact number of transactions in the block.
Transactions The actual list of transactions, exactly as many
as specified in the ” Transaction Counter” field.

TABLE 1.1: The structure of a Bitcoin block.

1.2.2.1 Blockheader

The blockheader of Bitcoin is a crucial part of the blockchain, as the values in
the blockheader are the input to the Proof-of-Work protocol. The functionality
of the PoW protocol is described in Section 1.2.3. The Bitcoin blockheader
consists of 6 different fields. Let us describe these in detail.

Version The version field describes the software version of Bitcoin used to
create the block.

hashPrevBlock The 256 bit long hash of the previous blockheader, where
the hash is an immutable short unique identifier and if anything would change
in the previous block, the hash of it would change as well.

hashMerkleRoot Similar to the "hashPrevBlock” field, the "hashMerkle-
Root” field is a 256 bit short unique immutable identifier of all the transactions
in the current block, which means, that if anything changes in any of the trans-
actions in the block, or new transactions are added to the block, this value
would change as well.

1.2. Bitcoin 7

Time The block’s timestamp of creation in number of seconds since 1970-
01-01 00:00 UTC. As it is an input to the PoW protocol, it is updated every
few seconds. These timestamps are more of a direction than a precise time of
creation due to the feature of the PoW protocol (Section 1.2.3). There are cases
in Bitcoin where the timestamp of a following block is actually sooner then the
previous block.

Bits The difficulty of the PoW protocol in a compact format. It is adjusted
every 2016 blocks.

Nonce A 32 bit value that is randomly chosen by the solver of the PoW
protocol. The nonce is the most changed input of the PoW protocol, as it is
the only value that provides complete liberty, and its purpose is to be changed
a lot in order to solve the PoW protocol.

1.2.2.2 SegWit

In the early days of Bitcoin the block sizes never approached the 1MB limit,
but as Bitcoin grew in popularity and usage, the blocks started to get larger
and larger as well. By 2015, the majority of blocks used all the available space
for transactions, which lead to developers looking for workarounds to increase
the number of transactions in a block by different measures. The final solution
was called SegWit [W.JT20] (standing for segregated witnesses), and the idea
was to decouple the digital signatures from the transactions, and storing the
signatures separately, creating more space for transactions in the blocks. The
protocol upgrade launched in the summer of 2017, and is still used to this day.
The 1MB block size limit is still a part of the blockchain.

1.2.3 Proof-of~-Work Protocol

The PoW protocol had a huge impact on consensus research, showing that
practical consensus is achievable in an open setting even with thousands of
participants. In a nutshell, the protocol is a cryptographic puzzle for which no
algorithm better than brute force is known. Let us explain it in more detail.
First, we need to learn what is a hash function.

A hash function is a function that takes as input any sized data and outputs
fixed-length data. However, a hash function on its own is not enough, and
we have to introduce cryptographic hash functions. Informally, a cryptographic
hash function is a hash function that is deterministic, practically hard to invert,
and collision-resistant. Deterministic means that the same input will always
result in the same output. Hard to invert means that it is infeasible to find an
input that would result in a predetermined output. Finally, collision-resistant
means that it is hard to find two inputs that would produce the same output.
In general, the output of a cryptographic hash function is considered a pseudo-
random sequence. Then the cryptographic hash puzzle used in Bitcoin is as
follows.

8 Chapter 1. Introduction

Definition 1. Using a cryptographic hash funtion H with integer outputs and
an integer K find = such that H(z) < K.

Initially, hash puzzles were created as an anti-spam measure in e-mail ser-
vices by Adam Back in HashCash [Bac02].

Bitcoin utilizes this algorithm in the following way. The puzzle’s target is
to find an output that starts with a minimum fixed number of zero bits, which
if we translate bits into integers can directly translate to finding an output
smaller than some integer K where K is a power of 2. Bitcoin uses the stan-
dardized SHA256 cryptographic hash function. In the protocol itself, whoever
first finds such an input to the SHA256 function can generate the next block of
transactions. It is easy to see that the optimal algorithm to solve such a puzzle
is random guessing (in other words brute forcing) due to the pseudo-random
nature of a cryptographic hash function. Then, the so-called mining in a cryp-
tocurrency is the process of solving the hash puzzle, i.e., trying random inputs
to the hash function.

The PoW protocol uses the hash puzzle as follows. The hash function uses
the new block header as the input, where most of the values are fixed. Most
importantly, all the transactions in the block are already chosen and used as
inputs in the "hashMerkleRoot” value, while the previous block’s hash is an
input as well. In order to solve the puzzle, there is the nonce value that is
chosen by the solver. This nonce is the value the solvers, or in other more
well-known terminology, the miners, are manipulating to solve the puzzle. The
motivation for a miner to try to solve the puzzle is a so-called block reward.
The block reward is a fixed value transferred to the miner’s chosen address,
and it is always the first transaction in every block. This transaction is usually
called the coinbase transaction. The miner can also claim transaction fees in
this coinbase transaction. The transaction fee is the difference between the sum
of the input and output values in a transaction (if the outputs have a larger sum
of values than the inputs, the transaction is invalid). Furthermore, mining is a
Poisson process with the number of proofs found in a given timeframe following
the Poisson distribution and time between solutions following the exponential
distribution. Thus solutions may start arriving almost immediately, but the
average time is designed to be 10 minutes between blocks. To keep this aver-
age, an automatic mechanism makes the cryptographic puzzle harder or easier
based on the average time difference of the most recent blocks. In Bitcoin, the
recalculation of the difficulty happens after every 2016 blocks, which is roughly
two weeks.

Coinbase transactions are the only way to mint new coins in Bitcoin. The
base value without the transaction fees is fixed and halved roughly every four
years. It originally started as 50 BTC per block while we just witnessed the
most recent halving, which reduced the base reward to 6.25 BTC. With the
constant increase in Bitcoin’s price, more and more users have been trying to
enter the mining space.

As the previous block’s hash is one of the inputs to the current blocks puzzle
and hash, all the blocks are chained together with these cryptographic hash
functions. Due to the properties of cryptographic hash functions this results in
the immutability of past blocks in the chain. This chain of blocks is the reason

1.2. Bitcoin 9

for the name blockchain. We usually refer to the current maximum length of
the blockchain as the block height.

If a miner sees multiple valid blocks at the same time, it has to choose one to
mine on. This choice is controlled by Bitcoin’s built in longest-chain rule. This
means, that the valid blockchain at any time is always the longest visible chain.
If there are multiple valid blocks in the network, and they have the same block
height, the miner mines on the one that it has seen the earliest. If the blocks
have a different block height, it will always choose the one with the higher block
height.

The situation when there are multiple valid chains parallel to each other is
called a fork. If the longest-chain rule is invoked, that means there is a fork in
the blockchain. There are different type of forks in a blockchain, let us quickly
describe them all. The first is the naturally occurring one, when multiple blocks
are mined around the same time, and the network has to decide which chain
will it follow in the end. There can be purposeful forks as well in the history
of a blockchain, of which there are two separate types. These usually coincide
with an update to the structure of the chain. The first type is a soft fork,
which means a change to the protocol that is backwards compatible, meaning
old members who did not update their software will still recognize the new
transactions and blocks as valid. The second type is a hard fork, which is not
backwards compatible, every node in the network needs to update its software
to keep participating in the network.

1.2.4 Mining Hardware

As the coinbase transaction is the only way to generate new coins, it quickly
became a competition between the users of the currency who can have the
highest mining power and generate the most coins. Mining power means the
number of hash functions the user can compute in a fixed amount of time,
usually 1 second. It is straightforward to see that the more hash functions one
computes the likelihood of finding the correct solution increases linearly. The
earned number of coins is not fixed, as mining is a probabilistic process, and
the mining power only provides an expected earned number of coins over time.
However, the longer the miner runs, the closer the expected earnings will get to
the real ones due to the law of large numbers.

The original purpose of the PoW protocol was to have every processor in a
typical desktop computer as one vote, replicating a usual voting type consensus
algorithm. Then, all users would have a similar voting power, and the network
would be relatively equally decentralized across all of its users. On the other
hand, due to the large economic return of finding a block, miners started ex-
perimenting with different ways to increase their mining power. The first boost
was to use a graphics processing unit (GPU) to solve the hash functions instead
of the main CPU, as the SHA256 function needs only simple operations. The
reason for this switch was that a GPU has 100s, or sometimes even 1000s of
processing cores that can perform simple calculations. Due to the characteris-
tics of the SHA256 function the mining software can be further parallelized on

10 Chapter 1. Introduction

a GPU, which resulted in a six time efficiency increase in mining compared to
CPUs at the time.

Later, miners started using field-programmable gate arrays (FPGAs), which
further increased the efficiency of the mining process, and they were roughly
twice as fast as the GPUs at that time. With the constant increase in Bitcoin’s
monetary value, more and more development went into increasing the efficiency
of mining.

Finally, application-specific integrated circuits (ASICs) were developed for
mining. These are specialized pieces of hardware and software designed only for
solving the SHA256 hash function. This approach lead to a further increase in
the efficiency of mining. Currently, all mining in Bitcoin uses ASICs. A more
in-depth description of this evolution can be found in [Tay13].

1.2.4.1 ASIC-resistant Hash Function

After some time using ASICs in Bitcoin it was argued that ASICs are unhealthy
for the network and unfair to the users. They put too much power in the
hardware manufacturer’s hands, and miners need a substantial investment to
start mining in the first place. These barriers have reduced the number of
miners in the network, and blockchain designers and researchers started looking
at other solutions for PoW mining.

The most popular idea is to use an ASIC-resistant hash function as the
hash puzzle in the protocol. This would still allow GPU mining, but designing
and manufacturing ASICs would be infeasible or unprofitable, resulting in a
healthier mining ecosystem and easier access to mining hardware for average
users. The difficulty is the design of such a hash function, and it is still being
researched. The most notable blockchains that initially utilized ASIC resistant
PoWs are Ethereum, Monero, and Zcash with different functions [eth20,vS13,
BK16]. However, all of them have seen attempts from hardware designers to
develop ASICs.

1.2.5 Mining Pools

Even though the idea of mining was to have one vote per user, the profitability
of the mining process has resulted in new systems that created large centralized
mining entities. These large entities are the so-called mining pools. The main
idea behind mining pools is the following. If a miner has a fixed mining power,
then the expected number of coins it will earn from mining is fixed. However,
due to the randomness of the process, the variance can be quite large, especially
if the miner has negligible mining power compared to the network. Thus earning
those expected coins could take a long time.

On the other hand, a miner can join up with other miners and mine to-
gether with them, and if they can share the earned coins fairly compared to
their provided mining power, they can reduce this variance in received coins.
Meanwhile, the expected number of coins the user earns would stay the same.
The amount of reduction in the variance is based on how much mining power
the collection of miners has. Then the question is, how can one measure the

1.2. Bitcoin 11

amount of work produced by a user in this collection of miners, and then pay
them out fairly for this work.

To solve this issue, miners introduced mining shares. In essence, a share is a
solution to a relaxed version of the main cryptographic puzzle, i.e., the solution
has to start with fewer zeros. If a participant finds such a share, it sends it
to a central authority that monitors all the users in the collection of miners.
The authority monitors the received shares looking for one that is not only a
solution to the weakened puzzle but a solution to the main one as well. If there
is such a hash, then the central authority creates the new block and relays it to
the network. Afterward, the block reward is fairly split among the users based
on the number of shares they have submitted to the authority. Such a collection
of miners is called a mining pool.

In this scenario, the actual miners do not have to worry about creating
the blocks or verifying the transactions. They are only performing the mining
activity on the pre-filled out block headers received from the central authority,
i.e., trying random nonces in the input of the hash function.

The impact of these mining pools is undeniable, and currently, in any sig-
nificant PoW based cryptocurrency, the vast majority of mining is done in such
mining pools (i.e., more than 90%). The problem with mining pools is that it
creates a few central authorities that vote in the name of all their users, and the
users have to put their trust in them. Of course, if a mining pool misbehaved,
the users could change mining pool at any time. Furthermore, with mining
pools, the number of entities that verify and relay transactions is massively
reduced, as the miners do not have to communicate with the network.

1.2.6 Network Communication

The last remaining part of Bitcoin protocol is how the participating nodes
communicate with each other. Bitcoin uses peer-to-peer (P2P) communication
protocols. P2P communication protocols mean a decentralized network where
the nodes directly connect without the need for a central authority. If every user
had a direct connection to everybody else, it would oversaturate the network
capacity. If there are N participants, there would be N? connections between
all of them, which is not an issue when there are only a handful of nodes,
but in Bitcoin’s case, there are thousands of them (currently around 10,000).
That would mean 50,000,000 connections that are regularly communicating with
each other. To avoid these network capacity problems, Bitcoin uses a different
approach.

As Bitcoin’s goal is to have a decentralized currency, using central entities
for control is counter-intuitive. Instead, Bitcoin uses the so-called gossip proto-
col [DGH™'87]. In a gossip protocol, the number of outgoing connections from
a node is limited to only a few, in Bitcoin’s case, it defaults to 8, where an
outgoing connection means that it sends frequent requests to these eight nodes
on the latest transactions and blocks they have seen, and if there are things
they have not yet seen, they request a full version of them. On the other hand,
the number of nodes that can connect to a single node is not limited, only the
outgoing connections are.

12 Chapter 1. Introduction

This type of communication between the nodes means that when a new
transaction is submitted to the network or a new block is found, it is not in-
stantly known by everybody in the network. Instead, it spreads across the users
more gradually. There has been research by Decker and Wattenhofer [DW13] to
estimate the propagation rate of information in the Bitcoin network and they
found that the median time for a node to receive a new block is 12.6 seconds.
On the other hand, even after 40 seconds, only 95% of the nodes have received
the block.

1.2.7 Security of Bitcoin

The goal of Bitcoin was to achieve a decentralized, secure currency that ad-
dresses the issues presented in previous digital currencies. Let us expand on
these issues, and explain how Bitcoin solves these problems. Furthermore, we
will discuss a few problems that have emerged since the inception of Bitcoin.

First and foremost, Bitcoin solves the Byzantine Generals Problem with a
probabilistic protocol. This solution is surprisingly robust, providing a higher
security threshold compared to classical voting based protocols. This threshold
is 50% of the mining power, whereas in classical Byzantine consensus protocols
the threshold is 33%. Higher malicious participation than 50% would mean the
attacker has a majority, and in an environment like that honest nodes could
never agree, thus PoW is an ideal solution to the agreement problem. The
PoW protocol was designed to solve the double-spending problem, but it has a
side-effect of preventing Sybil-attacks as well. The reasoning is straightforward,
as the number of new joining nodes does not influence the outcome of the PoW
protocol, only the new users’ mining power. Thus an attacker can not gain an
unfair advantage by entering the protocol with many new nodes.

Let us look at how Bitcoin also defends against history rewriting attacks.
To rewrite history, an attacker has to create a long fork, or in other words a
valid chain of blocks from some point in the past to abuse the longest-chain
rule to overtake the valid chain. For the attack to be successful, the attacker
needs more mining power than the actual active chain, as otherwise, the new
malicious chain would never catch up and get longer than the original one. If
the mining power is large enough in the official chain, getting such mining power
is deemed impossible. This attack can be dangerous in two cases. First, if there
is new mining hardware developed that is kept secret from the public, and it
is much more efficient and powerful than the current mining solutions. Such
hardware can perform such attacks. Second, in case of a smaller blockchain,
that uses the same PoW hash function as a major cryptocurrency, it is always
vulnerable to such attacks, because the mining power is available and only has
to be converted to the target blockchain. In this case, attackers may wait until
it is profitable to perform such an attack on a chain.

A novel attack called selfish mining, was presented by Eyal et al. [ES18],
which specifically targeted the PoW protocol. The main idea of the attack is
that when a miner finds a block, it does not reveal it automatically, but starts
mining the next block on it instantly. The attacker only reveals the block if other
miners publish a new block. Then, using superior connectivity, the attacker

1.2. Bitcoin 13

can distribute its blocks faster than the organic spread of the competing new
block. With such an approach, the authors showed that miners could obtain a
revenue larger than their fair share based on their mining power, which proves
that the bitcoin protocol is not incentive compatible. Based on some realistic
assumptions of Bitcoin’s network connectivity, the attacker only needs 25% of
the mining power to perform the attack compared to the previous 50% bound
for any attack.

Another novel attack directly targets mining pools. The attack is the block-
withholding attack [Ros11], where the goal is to bankrupt an opposing mining
pool. The idea is the following. A large miner joins a competitor mining pool,
but it only submits shares that are not solutions to the complete cryptographic
puzzle during its mining process. With this approach, the target mining pool
will observe and estimate a high mining power from the attacker and pays the
attacker its mined shares, but the attacker will never produce a valid solution.
Thus the target pool overestimates its mining power, and over time it will not
have enough funds to pay all its miners, which would lead to the miners in the
target mining pool migrating to other pools.

Last but not least, the cryptographic security of the used primitives is an
essential step in assessing Bitcoin’s overall security. The SHA256 hash func-
tion [0ST15] used in the PoW protocol is deemed secure against preimage and
collision attacks by most cryptography researchers. The cryptographic security
of it is 128 bits, which is well over the minimum required 80 bits. Regarding
the public key cryptography used in Bitcoin, it is currently secure, but it uses
elliptic curve cryptography, and is vulnerable to quantum computer attacks. If
any time in the future quantum computers become a reality, every output in
Bitcoin becomes vulnerable, and it would ruin current generation cryptocurren-
cies. However, this problem exists for any system and protocol that uses finite
field-based public-key cryptography, which includes most security protocols on
the internet.

1.2.8 Advantages and Disadvantages

Bitcoin users most commonly use a six-block confirmation time (1 hour) to
avoid situations involving naturally occurring short-term forks in the network.
The network will then have time to decide which fork they will continue mining
on, thus preventing the double-spending. This one hour delay in transaction
confirmation time makes Bitcoin infeasible to use on a day-to-day basis, like
paying in a store. On the other hand, one hour for a transaction across conti-
nents is much faster than anything currently available commercially, and it is
available to anyone in the world, as long as they have an internet connection.
The defense against the rewriting of history also means that every transac-
tion in Bitcoin is irreversible. This can be regarded as both an advantage and
disadvantage based on the situation. We would like to point out that due to
the nature of the public blockchain, if a new user wants to join the network, it
has to download and verify the entire chain before joining the network, which
is continuously growing. The storage needed to run Bitcoin is currently 330GB,
but every transaction will be stored forever and can be looked up at any time.

14 Chapter 1. Introduction

Finally, we would like to stress again that such an electronic currency being
decentralized and not depending on any centralized authority is an extreme
departure for currencies in general. Such systems were not even thought to be
possible before the arrival of Bitcoin. Even then, a lot of the community was
skeptical about it until it launched in the real world and showed that it is indeed
a working currency.

Other serious complaints that are brought against Bitcoin is its slowness
and lack of throughput. Even though, for example, VISA has 50,000 trans-
actions per second capacity [vis15], Bitcoin’s theoretical limit is only around
ten transactions per second, not mentioning that it takes an hour to confirm a
transaction, compared to seconds in a credit card network.

Finally we have to mention the accessibility of Bitcoin. In order to use
Bitcoin, one has to use software that manages the funds and addresses. This
software is usually referred to as the wallet. This wallet is usually one of two
different types. A full wallet means, that the software actually downloaded
all of the blockchain history and validated every transaction that happened in
Bitcoin, and it stores all the corresponding information locally. Then there are
so-called light wallets, which do not store a copy of the blockchain. Instead
it uses a third-party server to verify and submit transactions. It only stores
the corresponding private keys, and has the ability to create transactions, but
for any other process it has to communicate with the third party, which can
introduced new vulnerabilities.

1.2.9 Main Actors in Bitcoin

Over the last ten years of Bitcoin a clear hierarchy has evolved among the main
members and actors in the community. Let us describe their roles and privileges
in detail.

1.2.9.1 Miners and Mining Pools

There would be no PoW based blockchain without miners creating new blocks.
As such, they are the most important and powerful entity in the community.
They are the ones who mainly decide whether new updates should be launched
on the network, or whether some issues should result in a hard fork of the
chain. As most of mining is currently happening through mining pools, they
have influence on the day-to-day activities of a blockchain as well. One might
think there can be differences between what policies a miner and a mining pool
supports, but pools usually do not require any commitment from the miners.
This means that if a miner disagrees with its mining pool on some issue, usually
nothing prevents it from switching to a mining pool that supports its agenda.

1.2.9.2 Mining Hardware Manufacturers

With the development of mining hardware from GPUs to FPGAs to ASICs,
the actual manufacturer of the hardware became more and more prominent in
the community. Nowadays, with ASICs as the only viable solution for Bitcoin
mining the manufacturers behind them have gained a lot of power and influence

1.3. Scalability of Cryptocurrencies 15

in the community. Furthermore, most of the manufacturers not only create
hardware, but have their own mining farms and mining pools as well. With
the steep price and inaccessability of the hardware, their role and influence is
constantly increasing.

1.2.9.3 Exchanges

Exchanges are the primary platforms for users to convert coins between cryp-
tocurrencies. Some exchanges have the legal permit to provide exchange be-
tween fiat and cryptocurrencies, but there are much fewer of them. Most of the
monetary exchanges go through these exchanges, which gives them influence as
well. Currently a significant portion of all transactions are related to exchanges.

In some cases exchanges can be used as a wallet, as they also provide unique
addresses to their users. However, in that case the user does not have any
control over the private keys. If the user did receive coins to its designated
address under the exchange, then more than likely those coins won’t actually
stay as an output in the real blockchain, instead the exchange will store the
account balances in its internal database.

1.2.9.4 General Community

Finally the general community has considerable influence. Under general com-
munity we include among others the researchers who are either trying to im-
prove, or look for problems and vulnerabilities in Bitcoin. Developers creating
new services and products on top of the blockchain are a part of this commu-
nity. Larger forums are also included, where many discussions on the decisions
for the blockchain happen. But in these conversations the previous actors have
a say as well.

1.3 Scalability of Cryptocurrencies

Many enthusiasts envision blockchains as a globally used life-changing tech-
nology. Even though Bitcoin has changed the way many people think about
currencies and distributed systems, blockchains still face several issues that they
have to solve before it could become a widely used approach. The first and fore-
most problem is the throughput of these protocols. As mentioned before, the
current golden standard is VISAs electronic payment system, which can achieve
up to 50 thousand transactions a second in peak conditions.

Comparatively, Bitcoin can only achieve around ten transactions a second,
and other open P2P cryptocurrencies do not perform much better. This problem
gets substantial attention and research, and there are constant improvements,
but there are plenty of obstacles that first need to be overcome. Furthermore,
not only the throughput, but the confirmation time is a crucial issue, as one can
not expect to pay in a shop and wait minutes for a transaction to be confirmed.

Classic voting based byzantine agreement protocols do achieve some of the
desired features, but they fall short on the openness of the network, as they can
only function in closed or semi-closed networks. There has been recent work on

16 Chapter 1. Introduction

how to open these types of protocols up to the public. However, the resilience
against Sybil attacks is a significant issue that is hard to overcome if there are
no requirements for joining the network. In Bitcoin, the PoW protocol defends
against it. Mainstream protocol examples for these types of blockchains are
Stellar and Ripple [Maz15, CM18], which use a so-called federated byzantine
agreement. There is a trust factor implemented in the network, meaning that
every node chooses some other nodes that it will trust. It then needs 2/3
confirmation from these nodes only.

Some of the main ideas for PoW based protocols for scalability include the
following. For both throughput and confirmation time, the idea of micro-chains
has been popular. In essence, the idea entails having a single entity or a group of
entities chosen by either PoW or some form of randomness. They then create
multiple quick blocks of transactions until the protocol chooses a new entity
or group. The most well-known such protocols are Bitcoin-NG, Byzcoin, and
Algorand [EGSvR16, KJGT16, GHM"17].

Another common idea is sharding [KJGT18 LNZ"16, ZMR18]. Sharding
means the division of the network into smaller parts. These smaller parts func-
tion independently, and occasionally they sync all the shards to have agree-
ment among all of them. This allows for large scale parallel deployment of
a blockchain, resulting in a linear increase in throughput with the number of
shards.

Finally, there are payment channels [bit20, MMSH16]. The idea of payment
channels is to have pre-set channels between two parties on a chain, where they
can instantaneously (barring network speed and digital signature generation
times) transact with each other, without having to send the transactions to the
chain itself. Only the opening and the closing balances of the parties at the
two ends of the channel are visible on the chain. This allows instant trans-
actions between parties, solving the confirmation time problem as well. The
drawback is that every channel is only between two parties, thus if there is no
direct connection, the users have to use channels in between them or have the
transaction on the chain itself. Furthermore, payment channels do not require
any modification from the blockchain itself, as they are already available today
on Bitcoin, Ethereum, and others.

1.4 Privacy in Cryptocurrencies

One of the first considerations about cryptocurrencies was that they can pro-
vide cash-like privacy for monetary transactions, as there is no direct relation
between real-world entities and public keys or addresses on the blockchain. Fur-
thermore, many argue that privacy is a human right, and no entity has the right
to look into one’s purchases, but that is not the case with our current electronic
payment services. On the other hand, if such an electronic system existed, it
would be the perfect environment for criminal usage, as the authorities could
not connect people to their transactions.

As current digital transactions are always visible and trackable by banks,
and with the infeasibility of cash payments in the current world, there is a

1.4. Privacy in Cryptocurrencies 17

definite need for a private electronic payment system. However, the question is
whether cryptocurrencies are the solution.

If we take a closer look, some of the advantages of cryptocurrencies can
also result in disadvantages. The first and foremost is the immutability of
transactions, or in other words, transaction irreversibility. The same mechanism
that defends against double-spending prevents the correction of human errors.
If one sends currency to the wrong address, no higher entity or mechanism can
reverse the transaction.

Furthermore, even Bitcoin is only considered pseudonymous. Every trans-
action has to be kept and can be verified at any point in time by any user,
meaning all transactions that have happened in Bitcoin can be read and an-
alyzed without any constraints, as it is a public ledger. If one accidentally
reveals its pseudonymous address and could be connected to a real entity, an
attacker can read every transaction ever done by that address, whether sending
or receiving coins. These drawbacks lead to privacy concerns.

There are two main approaches for deanonymization in blockchains, namely
network analysis and transaction graph analysis.

Network analysis entails observation of network traffic between nodes. For
example, when and how a transaction appears in the network, or how a block
propagates through the network. An attacker can use these approaches to
deanonymize or identify users on the network. Earlier research [BKP14, BP15]
has shown that, for example, using Bitcoin, even through Tor, a well known
widely used P2P network anonymizing protocol, does not provide perfect de-
fense against network analysis attacks.

The second approach is transaction graph analysis [RH11a,MPJ"13a, AKR13].
In this case, the analysis takes place in a static environment, focusing on the
already confirmed transactions in the chain. These methods try to connect
users that otherwise do not have any direct relation, or try to cluster addresses
with different methods to identify which addresses are controlled by the same
entity. Furthermore, they can be used to monitor public entities’ activity as
well, trying to confirm or disprove their reported behavior.

There are plenty of other such observations and attacks specifically for Bit-
coin, and most of them can be directly implemented in other blockchains. These
problems instigated further research on how one can provide the advantages of
a blockchain without the privacy disadvantages.

1.4.1 Privacy-oriented Cryptocurrencies

There are ways to have privacy-preserving services directly built into Bitcoin,
and the most well known of them are the so-called mixing services. The idea be-
hind them is that multiple otherwise unrelated users combine their transactions
into a single transaction. Thus the inputs and the outputs of the transaction
can not be directly linked to each other. Instead, it mixes these input-output
pairs. The most well-known such service is called CoinJoin. On the other hand,
Bitcoin is just not flexible enough as a protocol to support any larger scale
privacy metric, and even the current techniques might be vulnerable according

18 Chapter 1. Introduction

to existing research [MB17]. Thus the community looked into designing new
cryptocurrencies with privacy as the primary goal behind them.

There have been two main approaches to creating a privacy-oriented cryp-
tocurrency. The first one is having the previously mentioned mixing services
built into the blockchain. The first implementation of this system is in the cryp-
tocurrency Dash [DD18], where so-called master nodes perform it. These nodes
are network participants with special privileges, and they can create these mix-
ing transactions after the users send transactions to them. To become a master
node, one has to own a large sum of coins (1000 Dash). The drawback of such
an approach is that the master nodes still know the exact links between inputs
and outputs.

There is a second approach for transaction mixing in a blockchain where
there is no need for special nodes. Instead, every transaction generated by any
user is automatically a mixing transaction. In this case, the blockchain utilizes
a new cryptographic protocol called ring-signatures [['S07] to achieve this effect.
Ring-signatures are a new type of public-key digital signature protocol, where
the main idea is the following. Let us assume there are N different public keys.
Only knowing the private key pair to one of these public keys, a user can then
create a ring-signature using all N public keys. With such a signature, an outside
observer can only see that the ring signature was authorized by one of the N
participants, but does not know which one. Then it is straightforward how
to implement this in a UTXO type of blockchain by having the spender of an
output during the construction of the transaction replace the digital signature
with a ring signature. In this case the user would choose the other participating
public keys randomly from the existing entire UTXO set. This mechanism
would then replace mixing services with a built-in protocol. For further details
go to [vS13,Noel5], as it is not straightforward how to correctly implement such
a transaction system.

The most famous blockchain that utilizes this approach is called Mon-
ero [monl4], which is originally based on the Cryptonote [vS13] protocol. In
Monero to further improve users’ privacy, the protocol hides the actual values
of the transactions as well using other cryptographic primitives, like commit-
ments. It is far from obvious how to prevent double-spending in such a system,
but that is outside of the scope of this thesis, and we direct the reader to the
research papers on the topic for further information.

The other popular approach for privacy in a blockchain is zero-knowledge
proofs [SMP87]. These are a type of mathematic theoretical proofs, where
nothing is revealed apart from that it is indeed a correct spending transaction,
and the sum of input and output values is the same. However, the addresses
and values are completely hidden. In comparison to mixing type privacy where
we still know one of the N addresses sent the transaction, with zero-knowledge
proofs, the transaction could be sent and received by any of the blockchain users
from the point of view of an outside observer.

These proofs are referred to as zero-knowledge succinct arguments of knowl-
edge, or in short zk-SNARKs [BCCT12]. An argument of knowledge is different
from a proof in terms of the adversary. In a proof, the adversary has unbounded

1.5. Contributions 19

computational power to try to break the proof, while in an argument of knowl-
edge, the adversary is polynomially bounded. Succinct simply means that these
arguments of knowledge are very short, in practical cases, constant sized. Fi-
nally, Zero-knowledge means that the prover proves the knowledge of a value
without revealing any information about the value itself. The most well-known
blockchain that utilizes zk-SNARKSs is Zcash [HBHW16].

1.5 Contributions

In chapter 2, we analyze transaction linkability in Zcash based on the currency
minting transactions (mining). Using predictable usage patterns and clustering
heuristics on mining transactions, an attacker can link to publicly visible ad-
dresses over 84% of the volume of the transactions that use a ZK-proof. Since
the majority of Zcash transactions are not yet using ZK-proofs, we show that
overall 95.5% of the total number of Zcash transactions are potentially linkable
to public addresses by just observing the mining activity.

In chapter 3, we further analyze privacy issues for the privacy-oriented cryp-
tocurrency Zcash. We study shielded transactions and show ways to fingerprint
user transactions, including active attacks. We introduce two new attacks,
which we call Danaan-gift attack and Dust attack. Following the recent Sapling
update of Zcash protocol, we study the interaction between the new and the old
zk-SNARK protocols and the effects of their interaction on transaction privacy.

In chapter 4, we investigate the generic landscape and hierarchy of miners
on the example of Ethereum and Zcash, two blockchains that are among the
top 5 in terms of USD value of created coins. Both chains used ASIC resistant
proofs-of-work which favors GPU mining in order to keep mining decentralized.
This, however, has changed with the recent introduction of ASIC miners for
these chains. This transition allows us to develop methods that might detect
hidden ASIC mining in a chain (if it exists), and to study how the introduction
of ASICs affects the decentralization of mining power. Finally, we describe
how an attacker might use public blockchain information to invalidate miners’
privacy, deducing the mining hardware of individual miners and their mining
rewards.

In chapter 5, we analyze the behavior of cryptocurrency exchanges on the
blockchain, and compare the results to the exchange volumes reported by the
same exchanges. We show, that in multiple cases these two values are close to
each other, which could mean that if they would not be, the exchange might
fake its reported volumes. Finally, we present a heuristic to try to classify large
clusters of addresses in the blockchain, and whether these clusters are controlled
by an exchange.

Finally, in chapter 6, we describe how to couple reputation systems with
distributed consensus protocols to provide a scalable permissionless consen-
sus protocol with a low barrier of entry, while still providing strong resistance
against Sybil attacks for large peer-to-peer networks of untrusted validators.
We introduce the reputation module ReCon, which can be laid on top of var-
ious consensus protocols such as PBFT or HoneyBadger. The protocol takes

20 Chapter 1. Introduction

external reputation ranking as input and then ranks nodes based on the out-
comes of consensus rounds run by a small committee, and adaptively selects
the committee based on the current reputation.

Part 1

Data Analytics in Blockchains

21

23

Chapter 2

Deanonymizing Miners in Zcash

Zcash was launched at the end of October 2016, with the goal of providing
a privacy preserving blockchain, where the privacy is based on mathematical
proofs. However, due to technical details, it did not launch with complete
protection, instead it provided the privacy techniques only as an optional, not
mandatory feature. This lead to some privacy issues in the chain, that might
not be obvious for the general user. Therefore multiple papers were published
on the topic, and our work is part of this line of research.

This chapter focuses on the miners and mining pools of Zcash. The reason for
this focus is the protocol requirement that every mined coin has to be shielded
and converted to the privacy preserving part of the blockchain before it is used
for general purposes. In this work we show multiple heuristics how one can link
these shielding transactions to public transactions in the blockchain, negating
the effect of the privacy preserving part of Zcash. Furthermore, we compare
our results to earlier work on the topic by Kappos et al. [KYMMI18], where
they showed that the majority of shielded transactions are connected to mining
pools. We show that our methods have improved their results by close to 20%
(from 65.6% to 84.1%) in terms of the overall volume of revealed coins.

Before we present our finding on the privacy issues in Zcash, let us describe
Zcash in detail. This chapter is based on joint work [BF'19b] with Alex Biryukov.

2.1 Zcash

The first theoretic solution that used zero-knowledge proofs was the Zerocash
protocol [BCGT14]. It was originally created as a direct extension of the Bitcoin
blockchain, and it would have worked in tandem with it. It was the first protocol
to utilize the novel zk-SNARK protocols.

Later the Zerocash protocol evolved into the more practical Zcash protocol,
which launched as a real cryptocurrency at the end of 2016. It utilizes these
zk-SNARKSs for privacy, but there is some duality in the blockchain that we will
explain in the following sections.

When Zcash launched, the zk-SNARK cryptography was still a novel tech-
nology, and thus the practicality of it in terms of performance was questionable.
In order to create a single transaction with such a zk-SNARK one needed about
40 seconds and 3 GB of memory on an average PC at the time. This imprac-
ticality lead to a dual approach from the developers of the chain, with two

24 Chapter 2. Deanonymizing Miners in Zcash

separate parts in the chain. There is a public portion, which works exactly the
same way as Bitcoin does, and there is a private part which uses zk-SNARKs.

The structure of Zcash is similar to that of Bitcoin, as it is based on the
Zerocash protocol. The blockchain itself is unspent transaction output (UTXO)
based, using 2.5 minute block generation time and Equihash [BK16] as its proof-
of-work function. The currency in the blockchain is called ZEC, while the
smallest possible value is 1 Zatoshi, where 1 ZEC = 10® Zatoshi. The default
transaction fee is 10* Zatoshi. The total supply of ZEC will be slightly less than
21 million, which is the same as in Bitcoin. The original mining reward was 12.5
ZEC per block, where 10 ZEC went to the miner who found the block and 2.5
ZEC went to the Zcash developers as the " Founder’s Reward”. The first halving
has already occurred, so the Mining reward is now 6.25 ZEC, where again 5 ZEC
goes to the miner of the block and 1.25 ZEC is used as the ”"Founder’s Reward”.

In general there are two types of transactions in Zcash. The first are trans-
parent transactions. These transactions work the same way as Bitcoin transac-
tions, with some previously unspent outputs as the inputs, and the new unspent
outputs as the outputs of the transaction. The difference between the overall
value of inputs and outputs is the transaction fee. They can only transfer coins
between public or transparent addresses, which in the rest of the thesis we will
refer to as t-addresses, since in the blockchain they start with a ”t”. Such trans-
actions are also called t-to-t transactions and are currently the default (this may
change in the future).

The second type of transactions are the ones that send or receive coins to
or from a hidden address. These addresses start with a "z” and thus in the
rest of the thesis we will refer to them as z-addresses. A transaction can use
both t- and z-addresses, but the z-address is not revealed on the chain, only a
proof that there is a valid z-address that sent or received an unknown amount
of coins. In the rest of the chapter we will refer to any transaction that involves
a z-address as a shielded transaction.

There can be 4 different types of shielded transactions:

e z-to-z transactions: the simplest case is where there is no public input or
output, which means the transfer is only between z-addresses. The only
revealed new amount is the transaction fee.

e 7-to-t transactions: in these transactions there is no public input, but
there is at least one public output, where the sum of the outputs has to
be less than or equal to the revealed new coins, while the remainder is the
transaction fee.

e t-to-z transactions: in this case, there are no public outputs in a trans-
action, only public inputs. The sum of the inputs has to be larger than
or equal to the amount of newly hidden coins, while the remainder is the
transaction fee.

e tz-to-tz transactions: the last case, where zk-SNARKSs are involved, but
there are public inputs and outputs as well in the transaction. In this case
the transaction fee is the difference between the newly revealed coins of
the zk-SNARKSs and the sum of public outputs.

2.1. Zcash 25

t-out Yes No Yes
t-in | z-in/out No Yes Yes
Yes No t-to-t tz-to-tz
No Yes z-to-t z-to-t
Yes Yes tz-to-tz tz-to-tz

TABLE 2.1: Every type of transaction based on the type of input and output
addresses, and how they are identified. Note that we can distinguish only 5 types
(only 4 that are shielded) out of the 9 possible, as we do not know whether there
was a z-address as input or output, when there is a t-address as input or output.

When a new coin is minted and rewarded to a Zcash miner, the miner can
only claim the coin by transferring it to a shielded address first. This is an
attempt from the Zcash developers to have every coin shielded at least once.
Recently, Zcash has introduced [shil9] mining directly to shielded addresses.
The problem with these shielded coinbase transactions is that the miner has
to reveal the shielded address in the transaction, which can lead to different
attacks against that address. These issues are described in more detail by Leto
et al. [LD20], among other new attacks against Zcash.

The first version of Zcash was called Sprout. The shielded transactions in
this version use a mechanism called joinsplit, which combines two previously
unspent shielded outputs and creates two new shielded unspent outputs, while
also being able to hide or reveal a clearly noted amount of ZEC. The limitation
of this protocol apart from its efficiency is the fact that even if a user wants to
send only 1 shielded output to another address, a dummy input and a dummy
output still needs to be created to fill out the rest of the input and outputs
of a joinsplit. Similarly, if a user wants to spend three unspent outputs, they
will have to use two joinsplits in the same transaction. A joinsplit has two
public parameters, the amount of previously public coins, called ”vpub_old”
, and similarly the amount of revealed new public coins, called ”vpub_new”.
There is a pair of these values for every joinsplit in the transaction. We will
refer to shielded addresses using this protocol as Sprout addresses. If we sum
up every “vpub_old” value for every shielded transaction in a block b (let’s call
this sum hidingsum,), and then do the same for every ”vpub_new” value as well
(revealingsumy), then the difference hidingsum, — revealingsum, is exactly how
many coins are in hidden Sprout addresses at the time of block b.

At block height 419,200 (29 October, 2018) the Sapling hard fork of Zcash
took place, which introduced a new zk-SNARK protocol. This update is a
major improvement in terms of efficiency, as proof times have been reduced
from around 40 to 3 seconds, while the consumed memory is reduced from
1.5GB to around 40MB. On the other hand, the new zk-SNARK protocol is not
backwards compatible, meaning that if a user wants to send coins from a Sprout
to a Sapling address, it has to reveal the value in-between, which is currently
only possible with the involvement of public addresses, see Figure 2.1. This
means that transactions between Sprout and Sapling addresses are visible, as
they have to use an in-between t-address.

26 Chapter 2. Deanonymizing Miners in Zcash

Transparent Addresses
t-to-t

z-t0-2 7-t0-z

K afo
¥ A7 > e
T e
e S
‘K;’K) O\l N

Sprout Addresses Sapling Addresses

FI1Gure 2.1: Sapling Turnstile

Sapling shielded transactions have also abandoned the joinsplit structure of
the zk-SNARKSs and they reveal exactly how many shielded inputs and outputs
(these inputs and outputs are sometimes referred to as shielded notes) they have
as side-channel information. The developers did consider including mandatory
dummy inputs and outputs, but they decided against it in order to reduce
the average transaction size. Furthermore, there is a new transaction field call
”value_balance”, which replaces the "vpub_old” and ”vpub_new” values, and
describes how many coins are being revealed or hidden in the transaction. It
can be a positive or a negative value as well, depending on the type of the
shielded transaction.

In the rest of the chapters, we may refer to t-to-z transaction as hiding
transactions, and to z-to-t transactions as revealing transactions.

2.1.1 Notation

Let us describe in detail the notation that we will use in the rest of the chapter.
The chain of blocks itself is denoted C'. The n-th block of the chain is denoted
Cy. The notation Cf,) means the first n blocks of the chain, C|_, means the
last n blocks of a chain, while Cj) is the range of blocks from block k to block
n.

The set of transactions in the block n is denoted X,,, while X{,, X[_, and
Xk,n are the same as before, but in this case containing all the transactions in
these blocks in their order. Shielded transactions are denoted X*". This means,
that to list every shielded transaction in a range of blocks from block £ to n
would be denoted X ﬁghn]

The inputs and outputs of a transaction z € X are simply denoted inputs(x)
and outputs(z). To denote the input or output addresses of a transaction, we
write inputs,, (z) and outputs,, (x). For the values of these addresses, we
write inputs,(x) and outputs,,(x). A single shielded transaction is denoted
2", The value vpub_old and vpub_new of the transaction is denoted z:%" and
ZL’Sh

wn’”

2.2. Analytics tool for Zcash 27

2.2 Analytics tool for Zcash

An important aspect of blockchains is that, in order to verify any transaction,
a full node has to keep a database of every transaction that has ever happened.
These data can become quite large: the Bitcoin chain is currently more than
330GB, while the Zcash chain is 27 GB. Because of the size of the database,
the tools used for the analysis become an important aspect on their own, since
the efficiency of the tool determines the number of different experiments we can
run on the database.

We have created a tool specific for Zcash as a fork of the tool BlockSci [KKML20],
specialized for Bitcoin [Nak09] and its hard forks. The original tool is re-
ported to be many times faster than any previous tool. The tool is available at
https://github.com/cryptolu/BlockSci/. Let us describe it in more detail.

The tool itself is written in C++. It uses an indexed file system based
approach. An indexed file means that every record in a file has a unique key
to it, which allows easy and fast random access to the records. In the case of
BlockSci, there are multiple such indexed files for the different data formats in
a blockchain (blocks, transactions, etc.). For every data format there are two
files in the system. The first file is a list of pointers, where every pointer has
a fixed size. Based on the index of the pointer, i.e. which place is it in the
list of pointers in the index file, the index file returns a pointer that describes
the exact starting point for the specific indexed record in the actual large file
of records. Then, in the file of records, the record itself first has a few bytes of
fixed length data, that describes exactly the length of the record, which then
we can also parse. This means, that if the program knows the exact index of
the record, it can retrieve that record through the index file with fast random
access.

In our case, the original version of BlockSci handles Bitcoin based cryptocur-
rencies without any modification. As Zcash is also a Bitcoin based blockchain,
the public part of the chain can be parsed with the tool without any major
issues. The public addresses use the same elliptic curve based public key cryp-
tography (ECDSA), thus these scripts did not require any changes. The only
modification we had to make was to parse and save the nonces of Zcash blocks,
as Zcash uses 256 bit nonces instead of 32 bit ones found in Bitcoin. The tool
needed this change because block header elements has to have a fixed size in
this indexed file system, and the original size for nonces was insufficient.

On the other hand, support for shielded transactions does not exist in the
original version of the tool. In its original format, shielded transactions are
simply recorded into the database as transactions without inputs or outputs.
This behavior also affected the calculations of transaction fees. For example, in
hiding transactions, the original version would return as the transaction fee the
entire sum of input values, if there was no public output in a transaction, as in
Bitcoin the fees are simply the difference between the sum of input and output
values.

We have added full support for shielded transactions in our fork of the tool.
This required changes and additions to the structure of transactions in the
database. First, we have added a basic indicator value, whether a transaction

28 Chapter 2. Deanonymizing Miners in Zcash

is a shielded transaction, and whether it is a Sprout or Sapling shielded trans-
action. Furthermore, depending on the type of shielded transaction, we have
added their public information as well. In the case of Sprout transactions this
means the number of joinsplits, and the exact value revealed or hidden by every
joinsplit in the transaction, and we have included the sum of these ”vpub_old”
and "vpub_new” values as a built-in function as well. For Sapling transac-
tions, we have added the ”value_balance” field, and we also note the number
of shielded inputs and outputs in a transaction. We have also modified the
transaction fee calculating function to accommodate for shielded transactions.

Finally, the original tool provided a Python3 interface for the library to use.
We have expanded this interface with all the additions we have made to the
tool.

In our tests' we used the Python interface of the library, as Zcash is still
fairly small in size compared to Bitcoin, and the efficiency of our functions was
still manageable. As an example of the efficiency, we ran a quick test, where
we cycled through every single transaction, examining whether they involve
a zk-SNARK, and if they do, we keep track of how much value was hidden
and revealed overall, while also keeping track of the different kind of shielded
transactions (Table 2.1). This script finished in 6.5 seconds without any paral-
lelization in the code (for 416,062 blocks and 3,993,633 transactions).

There are some drawbacks to using this tool as well. First of all, in order
to compile the Python library we had to use a machine with 64GB of memory.
Furthermore, the database is a static database that needs manual updates if the
user wants to ensure it always sees the most recent information available. On
the other hand this parsing can be relatively slow, as parsing the entire chain
takes many hours. Even then, there can be issues with constantly updating the
same database and it might require the full reparsing of the chain once in a
while.

2.3 Related Work

There have been multiple studies focusing on deanonymizing blockchain trans-
actions [RS13,MPJ"13b, BKP14], some with a special focus on the privacy pre-
serving blockchains, mainly on Monero [MSH ™18 KFTS17] and Dash [IKML™20].

There has been a short paper concerning Zcash by Quesnelle [Quel7] fo-
cusing on just one of the predictable usage patterns - the so-called round trip
transactions. The paper describes the linkage of equal hiding and revealing
values, where the time difference is short between them. Another recent article
about Zcash is by Kappos et al. [KYMM18], which is in general more concerned
about directly deanonymizing specific entities, while our work is purely focused
on mining pools (which are the source of Zcash and produce majority of the
shielded transactions). In the rest of the chapter we will show the shortcom-
ings and inconsistencies with mining pools in that paper by reproducing their
results while also providing novel clustering heuristics for mining pools that per-
form significantly better. Our paper also covers 11 months more data, which is

LComputer Specs: AMD Ryzen 5 2400g, 64 GB RAM, Running Ubuntu 18.04

2.4. Deanonymizing The Miners 29

roughly 61% more blocks and 78% more transactions, as Zcash was still only 2
years old at the time of this study.

2.4 Deanonymizing The Miners

Until recently, Zcash block rewards were always claimed by sending the coins to
a z-address first. After that, the owner of the coin can use it freely. This led us
to investigate how miners and mining pools use their rewards: do they convert
it back to public addresses, and if yes, could a connection be found between
these two transactions? Another aspect is that currently at the time of writing
there was no mining pool (that we know of)) that supported payouts to a hidden
address. This means that these miner payouts have to be visible somewhere on
the blockchain (as they are paid to public addresses), so the mined coins are
visible.

There are two general patterns for payouts. The first one is converting the
mined coins back to a public address controlled by the pool, and then paying
the miners in public transactions (we will call it pattern T). The second pattern
is paying the miners directly from a hidden address to the public addresses
(pattern Z). This means that the transaction on the blockchain appears as
having no inputs (since the coins are sent from a hidden address) but having
tens, hundreds, or sometimes even thousands of outputs. For both cases the
single payment per address is usually in the range of 0.001-0.1 ZEC. Since this
is a very specific transaction structure, it is easy to recognize.

To link transactions to mining pools, the simplest method is checking the
website of the mining pool, and whether they have a top miner section with
the miner’s public Zcash address. If this information is available, we can scan
for these addresses and their latest received transactions, mapping them to
the previously identified payment structures. This way we can identify which
pattern the specific mining pool is using. We will elaborate later how to identify
mining pool transactions without the top miner section of a mining pool in both
of these payment patterns.

The following study is performed at block height 416,062, which is equivalent
to 23 October, 2018, which means it is around the two year anniversary of Zcash.

2.4.1 Pattern T Mining Pools

In the case of pattern T, after a constant public address is found, the rewards are
transferred directly to a set of addresses controlled by the same entity a (signed
as controlled(a)). By summing up the total amount of received coins, they
become linkable to the specific hiding transactions of the mining pool and the
direct connection between the hiding and revealing transactions can be made
(Heuristic 1).

Even if the information on top miners is not available, the payout trans-
actions of a mining pool can be still found. To find pools using pattern T,
first scan through every shielded transaction disregarding the ones that are al-
ready identified. Calculate how much ZEC any public address received from a
hidden address in the same range of blocks as before, and then compare and

30 Chapter 2. Deanonymizing Miners in Zcash

Algorithm 1 Pattern T Heuristic, with a starting address a

procedure PATTERNTPOOL(a)
PoolAddrs <« controlled(a)
PoolTxs = ()
for x € Xﬁfn] do
if 3 outputs,,, (x) € PoolAddrs then
PoolTxs + x
end if
end for
return PoolTxs
end procedure

correlate these values to how many blocks different mining pools mined. If one
extends this approach to multiple scanned block intervals, the link becomes
even stronger. We used this approach to find the corresponding addresses and
will describe the results in more detail in section 2.4.3.

We have tested this approach with a varying set of block ranges and accuracy
requirements. The block ranges we used were 500, 1000, 2000, 4000, 8000 and
10000. In terms of accuracy of a match we used 10%, 5% and 1%. In our tests
there was no overall block range that worked for all of the pools. The reason
for that is that mining pools transfer their received coins through a shielded
address on a different schedule. Some pools shield their coins instantly, while
others might wait to accumulate thousands of coins to hide and then later reveal
them. The latter would justify using larger block ranges (e.g. more than 4000).
On the other hand if a pool changes its address often, the long range might not
provide enough matches, whereas a shorter range would work better.

The biggest drawback of this method is that it is difficult to link small
mining pools that have only mined a handful of blocks, as in those cases there
are always multiple matches for the amounts of revealed values. In statistical
terms this is not a huge problem, as these are only marginal pools and they
provide less than 1% of the mining power (number of blocks mined). If higher
precision is necessary one could mine in these smaller pools, to identify the
relevant addresses.

2.4.2 Pattern Z Mining Pools

For pattern Z, the connection between the hiding and revealing transactions
is not trivial, as there is no single constant address, instead hundreds - or
sometimes thousands - of addresses. However, the actual miner addresses will
reappear regularly in the pool reward transactions with a frequency depending
on the power of their mining hardware and on the frequency of the pool payouts.
Thus we scan every shielded transaction and find the ones with the pool-payout
structure (i.e. lots of outputs). Once a pattern Z transaction is found we check
its outputs, and look for overlapping addresses with the already existing set of
miner addresses. If the number of overlaps exceeds a certain threshold (e.g.
>40), we consider that transaction to be sent by the same mining pool, and

2.4. Deanonymizing The Miners 31

also expand our set of miners with the new addresses. Scanning iteratively
through a range of blocks until new transactions and miners can be added to
the existing sets, it is possible to find most of the transactions connected to a
pool (Heuristic 2).

Algorithm 2 Pattern Z Heuristic, with an sz as a starting transaction

procedure PATTERNZPOOL(S:E,X[‘S,Q”])
Miners «— outputs,g, (sz)
PoolTxs < sz
OldMiners = ()
while OldMiners # Miners do > Execute, until the miner set cannot be
updated anymore
OldMiners = Miners
for x € X[Sk’n} do
if |outputs,,, (z) N Miners | > 40 then
Miners < outputs,, ()
PoolTxs < =
end if
end for
end while
return PoolTxs
end procedure

The drawback of this approach is, that it is only usable for shorter periods of
time, e.g. 2,000 blocks (~4 days), as we have observed that miners sometimes
change their mining pools. If the range of blocks is too large, because of the
migrating miners one might consider a transaction from a different pool to be
the same as the currently investigated one, since the number of overlapping
addresses would become too high. If that happens even for one transaction,
from that point on the heuristic might identify even more transactions from the
different pool, creating a very large set of transactions and miners of multiple
mining pools.

The accuracy of the identified transaction can be verified by adding up the
overall value of the payouts and the number of blocks the mining pool actually
mined, and then comparing these two values to see if they are close to each
other. The algorithm accepts if the difference is small (<5%).

Let us call the set of remaining not-yet-linked mining power from block k
to n UnknownPower(k,n). To find a pool using pattern Z that does not have
a top miners section on their website we use the following approach. First we
disregard every shielded transaction that has already been identified. Then we
look for transactions that have tens of outputs. For every such transaction we
check with the previous method (2) for overlapping addresses in them, add up
the overall received value and compare it with the number of mined blocks per
mining pool (3).

Choosing the correct threshold values is a non trivial task, and because
of that we have tested the heuristic with a wide selection of them. We ran
the algorithm with differing block ranges (the same ones as for pattern T),

32 Chapter 2. Deanonymizing Miners in Zcash

while we have also used a different number of overlapping miners (10, 20, 40,
80). Our experiments show that using smaller overlap sizes (10) causes over-
identification of transactions because of miners who either mine for multiple
pools, or switch pools in-between, while a too large threshold value will not
identify enough transactions. This problem becomes worse with each increase
in the block range, as it is more likely that more miners will switch a mining
pool in a larger timespan.

Algorithm 3 Heuristic for finding a pattern Z style mining pool without a
base_tx
The set of uncovered miner transactions are used as MinerTxs
UnknownTxs = Xj', \ MinerTxs
NewPools = ()
for x € UnknownTxs do
NewPools < PatternZPool(x,UncoveredTxs)
end for
for p € NewPools do
if)., outputs,, (z) € UnknownPower(k,n) then
p is the set of payout transactions for the pool with the matching
mining power
end if
end for

2.4.3 Results of the Heuristics

If we consider the entire chain, then our heuristics linked 88.4% of the mining
reward movement in the shielded addresses. In the following table (Table 2.2)
we show the exact results per mining pool, where we also provide the amount
of value mined by the pool to show that our linking was unique. Overall our
heuristics linked 84% of the volume of z-to-t transactions, if we add the simple
Founder Heuristic from [KYMMI18]. Without those large valued transactions
we cover 70.3% of the volume.

Below we show how many transactions our heuristics linked this way and
how many transactions were in the different categories before and after this
process.

e Remaining shielded transactions: 179,057 (originally 534,944, 66.5% have
been linked)

e t-to-z: 58,557 (originally 222,306, 73.6% linked)
e z-to-t and maybe z-to-tz: 88,616 (originally 280,754, 68.4% linked)
e z-to-z: 14,431 (8% of the remaining transactions)

e tz-to-tz: 17,453 (9.7% of the remaining transactions)

2We could only verify MiningPoolHub’s payouts from block 193,000 and BitClub Pool’s
payouts from block 120,000

2.4. Deanonymizing The Miners 33

Name Pattern T | Pattern Z Mined Llnked
Value Portion
Flypool 14,435 94,277 1.79M ZEC | 0.995
F2pool 1,075 0 1.35M ZEC | 0.994
Nanopool 0 40,083 338K ZEC | 0.981
Poolin 126 0 138K ZEC | 0.996
Suprnova 12,920 0 167K ZEC | 0.961
Coinmine.pl 0 7,204 78K ZEC 0.925
MiningPoolHub 7,598 0 156K ZEC | 0.999
BitClub Pool 67> 0 1.9K ZEC 0.969
DwarfPool 2,953 0 27K ZEC 1.0
Slushpool 3,027 0 49K ZEC 0.999
Antpool 378 0 93.8K ZEC | 0.999
Zpool.Guru 88 0 824 ZEC 1.0
Nicehash 203 0 429 7ZEC 0.999
Luxor 185 0 6K ZEC 1.0
Solo Miners 3,698 0 43.8K ZEC 1.0

TABLE 2.2: Results from our heuristic per mining pools, only for pools and miners
where the linked transactions by our heuristics were verified by the overall mined
values

In terms of thresholds, as we have mentioned earlier we have experimented
with many of them, and for Pattern Z we achieved the best results for a range
of blocks of 2,000 and an overlap of 80 for Flypool and Nanopool, while if we
remove those transactions from our set, then for Coinmine.pl the best results
were achieved by an overlap of 20 miners and a block range of 10,000. Choosing
a too small overlap and/or too large block range, results in marking too many
transactions because of miner migration and mining for multiple pools, while
too large overlap and too small block range will result in marking not enough
transactions.

2.4.4 Accuracy of the Heuristics

In case of pattern T payouts, the transaction linkage is sound and verifiable by
comparing the number of blocks mined by an entity and the amount of ZEC
the suspected address received in the same period. Indeed, these two values
only differ by a small amount (5%), and there is no other entity with a similar
mining power in the inspected interval (more than 10% difference).

In case of pattern Z payouts, the verification is done similarly, but in this
case it can not be decided whether every single transaction was found, as a
statistically negligible number of payout transactions could be missed. On the
other hand, if an attacker starts with a payout transaction from a different
mining pool, the resulting set of transactions will be disjoint, if the parameters
are set correctly and the overall payed out value matches the number of mined
blocks. Both of our heuristics are verified with the results in Table 2.2.

34 Chapter 2. Deanonymizing Miners in Zcash

2.4.5 Comparison of results to previous work

Below we attempted to reproduce the results (Table 2.3) of the paper by Kappos
et al. [KYMNM18], where we followed the instructions step-by-step provided by
their paper. We also compare our verified results to theirs on the same dataset.

Name Kappos et. al. [KYMMI18] | Reproduction | Our Work
Flypool 3 3 67,985
F2pool 720 17 717

Nanopool 4,107 3,568 19,984
Suprnova 0 0 11,185
Coinmine.pl 0 0 6,678
Waterhole D 5 0
BitClub Pool 1,516 1,210 101
MiningPoolHub 0 0 1,335
DwarfPool 1 1 2,833
Slushpool 0 0 941
Coinotron 0 0 0
Nicehash 0 0 203
MinerGate 0 0 0
Zecmine.pro 0 0 0

TABLE 2.3: Comparison of results with [KKYMMI8] in terms of number of linked
z-to-t transactions, reproduction of their and our Pattern T (1) and Pattern Z (2)
heuristics on the same dataset

In their paper they claim to uncover 120,629 of the z-to-t transactions that
are connected to miners, but based on the paper and the data they report one
can only count their Founder transactions (1,953) and the ones in Table 2.3,
which overall sums up to 8,305. On the other hand we have implemented their
heuristics, and the heuristic did return 98,274 miner transactions accounting
for 62.8% of the overall value (which is more than their reported 52.1%). If we
remove the restriction of at least 100 outputs in the transaction, we uncover
~122,000 transactions accounting for 69.4% of the overall value. We could not
find out what causes these discrepancies.

We uncovered these results using every address that ever mined a block.
When we reduced the addresses to only ones controlled by a mining pool, the
results reduced to 6,853 transactions and 26.9% of the revealed value. This steep
reduction was caused by the following. There were 3 addresses that mined a
single (or very few) block that are controlled by a large exchange. If we include
all transactions where the receiver addresses are controlled by someone who
mined a block, we include all the addresses that are controlled by the exchange,
which results in thousands of addresses. As a lot of miners mine directly to an
exchange address, most of these transaction are actually payouts but they are
not found based on the logic presented in the paper. This is reinforced by the
discrepancy between their reported number of uncovered transactions (120,629)
and the number of z-to-t transactions linked in Table 2.3.

2.5. Summary and Conclusions 35

Our opinion is that the authors did not consider the difference between how
many blocks somebody mined and how much value was paid out. With our
implementation of their heuristic there are cases where a miner mined only 1
block in the history of the chain, but is somehow responsible for the payouts of
thousands of transactions. Otherwise we might have misunderstood something
based in the paper, but we tried to implement the heuristics literally.

2.4.6 Inflation of results

The results of [KYMNMI18] in percentage terms is inflated by the behavior of
F2pool. F2pool is one of the largest mining pools that used a payout structure
that was a mixture of pattern-T and pattern-Z payouts which we describe in
detail.

First, let us refer to the address corresponding to F2Pool that received the
minted coins in a coinbase transaction as Tr. As we have described earlier, in
order for a miner to use the newly minted coins, it has to spend it first to a
shielded address. In case of F2Pool this happened on average 1.6 times a day.
Then in a single revealing transaction the pool paid out all of its miners, where
the value of the revealing transaction was the same as the value of the hiding
transaction minus the transaction fee. Among the output addresses one address
that also receives coins is Try. The next time F2Pool is hiding its mining reward
coins it has the output of the previous revealing transaction among the inputs.

This constant loop of coins inflates the revealed amount of coins from a
shielded address. After calculating it exactly, we have found that this single
loop is responsible for 492 thousand coins of the overall 3.788 million coins
(13.1%) revealed during the timespan of [KYMM18]. If we remove the loop and
only consider coins that were not part of it, their original 65.6% result is reduced
to 60.5%, while our approach decreases from 84.1% only to 82% (considering
only mining and founder transactions in both cases).

2.5 Summary and Conclusions

In this chapter we have shown two heuristics to link mining related hiding and
revealing transactions in Zcash. We have linked over 88.2% of the mined coins
tracked through the shielded pool. Overall we increase the coverage based on
mining pools in terms of the overall revealing transaction volume of Zcash from
65.6% in [KKYMM18] to 84.1% on the same dataset.

This work shows that even if a blockchain is theoretically safe, bad use
practices and an intermix of hidden and public transactions can lead to con-
siderable information leakage defeating the very strong cryptographic privacy
features of Zcash. Moreover, since hidden transactions form only 13.4% of the
total number of transactions, 95.5% of all (including both public and shielded)
Zcash transactions were potentially linkable, which is very close to privacy level
of the original Bitcoin blockchain. This study shows that if there is no proper
incentive for the mandatory usage of privacy preserving techniques, the over-
all effect of these techniques can be negligible. Furthermore, we can provide

36 Chapter 2. Deanonymizing Miners in Zcash

a more accurate general privacy study on Zcash if we remove these mining re-
lated transactions from the shielded pool of transactions. This further study is
available in Chapter 3.

Finally, we note, that if mining directly to shielded addresses by the min-
ing pool members became more popular, it would reduce the accuracy of our
heuristics, as the hiding and revealing volumes might not be equal or close to
equal anymore. As of now we have not observed widespread implementation
and usage for payouts directly to shielded addresses.

37

Chapter 3

Further Transaction Linking in
Z.cash

In this chapter, we continue our privacy research on Zcash, where we utilize the
presented techniques in Chapter 2 to reduce the number of observed shielded
transactions to a smaller set, allowing for further linkability in the blockchain.
We focus on the linkability of t-to-z and z-to-t transactions with the end goal of
reducing the privacy in Zcash to the equivalent of Bitcoin privacy. The overall
goal of our research is to show that Zcash is not just a black-box type of solution,
where if a user uses the shielded transactions, it has constant perfect privacy.
Instead, we show that even the users of Zcash have to put some care into how
they use the shielded transactions, and how they transfer coins between the
public and private parts of the blockchain.

In this chapter first we show general transaction linkability methods based
on the exact value of the hiding and revealing transactions. We also analyze the
success and false positive rates of these methods. Furthermore, we show two
novel active attacks - Danaan-gift attack and Dust attack - against Zcash user
privacy, which shows that even Zcash users can be vulnerable to some attacks.
This chapter is based on joint work [BEV19] with Alex Biryukov and Giuseppe
Vitto.

The following study was completed on Zcash up to block number 472,284,
which is equivalent to January 29, 2019.

3.1 Linking with Transaction Values

Utilizing the previous techniques in Chapter 2 we can eliminate a large portion of
shielded transactions and only focus on ones that are probably not performed by
miners. For this work we have focused on these remaining shielded transactions.
This removal of transactions resulted in 92,233 hiding and 107,772 revealing
transactions as a hard-core set of remaining hidden transactions. First, let us
show the most trivial way of linking hiding and revealing transactions.

Heuristic 1. If a hiding and a revealing value are exactly the same, their values
are unique as hiding and revealing values in the observed block range and the
hiding transaction is in an earlier block than the revealing transaction, then
they are considered to be linked.

38 Chapter 3. Further Transaction Linking in Zcash

Using the direct match approach (first shown in [(Quel7]) on these remaining
transactions we find that 8,954 revealing shielded transactions out of 107,772
are uniquely matchable considering the entire Zcash blockchain.

To acquire a false positive rate for the heuristic, we deployed the following
measurement. First we measure the number of unique transaction output values
in the first half of the blockchain (up to block 236,142). Then we measure how
many of these values stay unique in the second half of the chain. We found,
that 14.7% of these values lose their uniqueness (769,071 out of 5,230,325). This
means that direct value matching heuristic has false positive rate of just 14.7%
over the half-blockchain duration (13 months), and less over shorter windows
of time.

3.1.1 Direct Value Linking Including Transaction Fees

We have also found a handful of interesting transactions, where both the hiding
and revealing value is unique, but the hiding value is larger by exactly 10,000
Zatoshi, which is the default transaction fee. This leads us to a likely expla-
nation, that the value was also moved once as a z-to-z transaction, and then
the receiver is revealing it to the public. Either a user moved the coins to him-
self between shielded addresses wrongly assuming that this way he gets more
anonymity, or more plausibly a change of ownership happened for the coin (and
also not gaining anonymity compared to a change of ownership occurring in the
plain sight with the t-addresses).

We have investigated and extended the observation above to the case where
instead of a direct value match there is a difference in value which is a multiple
of the default transaction fee of 10,000 Zatoshi. This could correspond to a
value making several hops inside the shielded pool before being revealed, each
time losing 10,000 Zatoshis. From this the observer can also conjecture the
number of hops that the value made.

Heuristic 2. If a hiding value is n times 10,000 Zatoshi (n < 10) larger than
a revealing value, their values are unique as a hiding and revealing value in
the observed block range, the hiding transaction is in an earlier block than the
revealing transaction and the transactions have not been linked for any k£ < n,
then they are considered to be linked.

If we extend the possible linkable values with this technique, the original
8,954 unique links are increased to 9,919, which is a 10.8% increase considering
only 1 hop. Interestingly the number of unique links does not increase by much
more by increasing the number of hops (only 400 more links with up to 9 hops').
This seems to confirm our previous observation that many users think of the
shielded pool as a perfect cryptographic anonymizer and think that a single z-z
hop inside the shielded pool is sufficient. This expectation of gained privacy is
not true if the value passing through the shielded pool was unique or rare in
the entire chain. This also leads us to an idea of value fingerprinting described
in the later section.

'Our maximum allowed since 10 hops would be 100,000 Zatoshi, which is a common value
on its own.

3.1. Linking with Transaction Values 39

3.1.2 Subset sum

We have investigated the usefulness of subset sums for linking shielded trans-
actions by connecting a single hiding transaction to multiple revealing transac-
tions, or vice versa. The idea is to check if users hide their value in a single
transaction, but reveal it over time in multiple payments, or similarly hide their
coins in multiple phases, while revealing it in a single transaction.

First, we had to consider how many numbers can be summed up overall.
If we consider the average number of remaining shielded transactions, we see
that about 2,000 coin revealing and hiding transactions remain for every 10,000
blocks after removing the mining transactions. The smallest unit of account in
Zcash is 1 Zatoshi = 1078 ZEC. Then any transaction value can be in the range
of [1,..., 10'] Zatoshis. If we consider the number of possible combinations of
2,000 inputs or outputs, then it is easy to see that even (20300) = 1.3-10° which is
well above the birthday bound of all possible values (which is around 107). This
means, that some sums of just 3 values could be just coincidence. Nevertheless
this could be still of interest since even in case of collisions we can reason in
terms of sizes of anonymity sets (which would still be relatively small).

The technique did find a handful of interesting matches for 2 sums, especially
in cases where one member of the sum is a value with multiple non-repeating
non-zero digits, while the other is a round value (e.g. consider a transaction
with the input value 3.54156325 ZEC and the two outputs with the values
0.40002 ZEC and 3.14154325 ZEC?). This led to a further analysis idea, which
is explored in the following sub-section.

3.1.3 Fingerprinted Values

We have found another promising technique for connecting different hiding and
revealing values that had no direct connections so far. We will use an approach
that we call value fingerprints. In our definition, the fingerprint of a transaction
value is its last 7 digits in Zatoshis. In particular the last 4 digits are especially
stable as a fingerprint since this value is below the typical transaction fee of
10* Zatoshis (which is currently below 1 US cent). Thus they usually have
little economic meaning and represent just a remnant of previous transactions.
The distinguishability of a fingerprint depends on its entropy, which in this
case describes how rare the value is. Intuitively, round values are much more
frequent than random values. It is worth noting that, in a regular economy,
the digits below the fee threshold would typically stay zero. However this is
not the case in the blockchain world, where mining pool payouts are in most
cases computed with full precision thus creating random distribution in the least
significant digits and which can be used for transaction fingerprinting. This is
somewhat similar to the serial numbers on the paper cash banknotes, with a
difference that the precision is not sufficient to keep the transactions unique.

Heuristic 3. If a hiding value matches fingerprints with a revealing value,
no other hiding or revealing value matches fingerprints with either of them
in the observed block range and the hiding transaction is in an earlier block

2These are fictitious values to preserve the privacy of the actual transaction.

40 Chapter 3. Further Transaction Linking in Zcash

than the revealing transaction, then they are considered to be linked with the
fingerprinting technique.

We consider two fingerprints to match if either 5 of the last 7 digits are the
same, or all last 4 digits are equal. Fingerprints where the last 3 digits are zeros
(e.g. '0000’, "1000%) are disregarded.

In Section 3.1.1 the heuristics linked transactions where one of the values in
the sum or the difference of the values is exactly 10,000 Zatoshi or a multiple
of it. These transactions are linked with the fingerprint technique as well, since
the last 4 digits remain the same.

3.1.3.1 Longevity of Fingerprint Uniqueness

One concern with this method is that the possible fingerprint set is too small,
resulting in no unique links if we consider the entire chain for pairs of hiding and
revealing transactions. In order to check the relative strength of the linkage, we
have investigated several block ranges to see how many unique pairs are evident.
Table 3.1 describes our results in terms of block ranges and the number of unique
links.

The block range is a sliding window of blocks, where if the range is N, we
consider hiding fingerprints in the first N/2 blocks and we check for matching
revealing fingerprints in the last N/2 blocks. Once a matching pair is found,
it is not considered in the subsequent checks. The valid transaction set is the
same hard-core set as we used for the case of exact value linking.

‘ Sliding Window Block Range ‘ Unique Fingerprint Links ‘

20 5,448

100 9,436

500 9,681
1,000 9,733
2,000 9,761
4,000 9,308
8,000 10,335
12,000 10,613
16,000 10,642
24,000 10,363
32,000 9,736
64,000 6,833

TABLE 3.1: Number of unique fingerprint matches through the entire chain for a
given range of blocks.

We will call this feature the longevity of fingerprint uniqueness. As seen in
Table 3.1 the largest unique match was on a sliding window of 16,000 blocks
(which is approximately 4 weeks), while we received similar results between
8,000 and 24,000 blocks as well. This means that the average longevity of a
fingerprint (aka ”serial number”) staying unique is approximately 2-6 weeks.

3.1. Linking with Transaction Values 41

Note that the database is the same as for exact value matching. If we disregard
the direct unique value matches (Section 3.1.1), on the range of 16,000 blocks,
we receive a number of 7,228 unique matches (Section 3.1.4, Table 3.3) out of
107,772 total transactions.

Another approach for determining the longevity of fingerprint uniqueness
is examining public transactions to determine how long the fingerprint of an
output stays unique. We have implemented this approach by calculating the
average number of transaction outputs it takes for a duplicate of a fingerprint
to appear considering all (except mining) transactions in the chain. In this case
we have recorded a fingerprint from an output, traced and saved the connected
chain of transactions where this fingerprint still exists, and then checked when
the fingerprint appears again from an unrelated transaction output.

The result of this experiment was that the average number of outputs until
a fingerprint is unique was 15,979, while the median was 16,788 outputs. Then
we have approximated the average number of shielded outputs in a shielded
transaction from the Sapling transactions (where this information is visible)
and calculated the average number of shielded outputs per block, which is 0.95.
Then by dividing these two values we get 16,820 blocks for the average and
17,671 blocks for the median value, which is in line with our measurements from
Table 3.1. We have also created a plot, shown in Figure 3.1, which for every last
4 digit fingerprint represents the average number of outputs generated by the
blockchain during which the fingerprint stays unique (after we removed all the
mining-related transactions). From this figure we see that a ”good fingerprint”
stays unique during generation of about 16000 new outputs by the blockchain,
which is about one month. In Table 3.1 the decrease in matches after increasing
the window to 24,000 blocks is in line with our measurements for the longevity of
fingerprint uniqueness, as the likelihood of two random revealing values having
the same fingerprint significantly increases, while the table reports only the
unique matches.

3.1.4 Further Results

In Heuristic 1 we have used unique value matches. However even in the case
where a matching is not unique, the proposed methods still provide a proba-
bilistic linkability feature.

Let us call the probability of a correct value match® of the unique input to
the unique output going through the shielded pool by P. Then to estimate the
probability of correct non-unique matches we can divide P by the number of
possible pairings. If e.g. our baseline best case is 85.3% probability (assuming
14.7% false positive rate), with possible 3 hiding and 2 revealing values which are
all identical, the probability of correct linkage is 3—12 -0.853 = 0.142. Generalizing
this approach, the probability of correct linkage is W - P, where |h| and |r| is
the number of times the exact value in question has appeared as a hiding or a
revealing value respectively.

This approach can be directly translated to fingerprints as well, where a

lower value of P might be applied as these links provide less accuracy in general.

3The values are called matching when they differ by single fixed z-z hop fee.

42 Chapter 3. Further Transaction Linking in Zcash

Number of Outputs Until Repetition

20000

g

=}

=

A 15000

5

£

S 10000

)

op

g AP - . . S

& 8000 pt R T
0
‘0000’ 2000’ “4000° ‘6000’ ‘8000°

Last 4 Digits

FIGURE 3.1: Average output distance until a fingerprint (last 4 digits of the trans-
action value) stays unique. The mining related transactions are removed from the
dataset.

’ |h| - |7 \ Num of links ‘

9.919
882
308
344
134

0 721

QY | W N~

6-

—_

TABLE 3.2: Number of equal in/out value pairs (modulo single z-z hop fee) entering
and exiting the shielded pool over entire chain history.

Considering these metrics, Tables 3.2 and Table 3.3 summarize the number
of links registered based on the possible number of pairs (|h| - |r|). Further
exploration of probabilistic matching together with anonymity set sizes derived
from the subset sums approach could be a direction for future research.

3.2 The Model for the Probability of Finger-
print Survival

We now present a statistical model which describes the probability that a finger-
print remains unmodified through several shielded transactions. More precisely,
from the public and shielded transactions data, we will model the hidden walk
of the fingerprinted value through different hops inside the shielded pool (i.e.
shielded transactions) before being revealed in a z-to-t transaction. We’ll then
use this model to compute the survival probability of fingerprints, i.e. the

3.2. The Model for the Probability of Fingerprint Survival 43

| [h] -]| | Num of links | Non-Unique Complete Matches

1 10,642 7,228
2 5,212 3,513
3 2,192 1,456
1 1,150 738
5 634 418
6-10 1,913 1,227

TABLE 3.3: Number of possible fingerprint pairs and how many times they happen

for a sliding window of 16,000 blocks. In the last column we have removed the

matches that were also tagged as unique complete matches in Table 3.2 (the first

line of the table contains the unique matches). These unique matches from the

previous Table 3.2 did not only remove matches from the unique matches (first line),

as even though the removed pair is a unique match with direct value matching, that
does not mean it is a unique fingerprint match.

probability that a value that enters the shielded pool exits with its fingerprint
unmodified. As shown in Figure 3.1, not all fingerprints are equally likely and
hence we cannot talk about the survival probability of any fingerprint: we will
then refer only to fingerprints -the good fingerprints- that have an average out-
put distance greater than 10,000, i.e. fingerprints above the y—axis value of
10.000 in Figure 3.1, and we will assume these to be equally likely. The follow-
ing model is built accordingly.

We denote with P(F P) the overall survival probability of any good finger-
print going through a path inside the shielded pool and then exiting with a re-
vealing transaction and we let Z be a discrete random variable which counts the
number of transaction-hops* inside the shielded pool over some path. We then
denote with P(Z = n) the probability that a walk inside the shielded pool goes
through exactly n hops before exiting. We further denote with ZPaths(n + 1)
the set of paths of length n + 1 whose first n hops are inside the shielded pool
and a last hop that is an exit z-to-t hop. We can then model the survival
probability of good fingerprints as

P(FP)=Y P(Z=n)-P(FP|Z =n)

n>0

—S Pz =n)- (S P(FP|x) @@))

n>0 x€Z Paths(n+1)

In order to estimate (£ P) under this model, we computed the following values:

e Zlen: the average number of hops a path goes through inside the shielded
pool before exiting. Assuming each hiding transaction is independent, we set
Zlen to be equal to the ratio between the number of z-to-z transactions and
the number of hiding transactions. For more details see Section 3.2.3.

4Tt is important to think of transactions as hops, since it is inside the transaction that a
fingerprint may be spoiled.

44 Chapter 3. Further Transaction Linking in Zcash

e P(Z = n): we modeled this probability using a Poisson distribution of pa-
rameter Zlen;

e P(FP|x) for any path x € ZPaths(n + 1) : the probability that given the
path x the fingerprint survives, i.e. the product of the probabilities that
the fingerprint survives in each transaction of x. The per-transaction type
survival probabilities are obtained analyzing the fingerprint survival rate in
transparent transactions that have the same number of inputs/outputs as the
considered shielded and revealing ones;

e P(x) for any path « € ZPaths(n + 1): the probability that = occurs, i.e. the
product of probabilities to have each transaction-type occurring in . The
distribution of the different types of transactions in the three categories t-to-z,
z-to-z and z-to-t is directly obtained from the blockchain.

More details on the underlying assumptions and how all these values can be
estimated are reported in Section 3.2.1.

Within this model we estimated that the average number of hops a path
goes through inside the shielded pool is only Zlen = 1.42 and the survival
probability of good fingerprints is P(F'P) ~ 16.6% (Section 3.2.1).

3.2.1 Experimental results

In order to provide experimental results for the presented stochastic model in
Section 3.2, we must gather the relevant statistics from the chain itself. First,
we have investigated the Sapling shielded transaction set, as that provides a
insight into the usual amount of shielded inputs and outputs for a shielded
transaction. Secondly, we observed the public blockchain data to estimate the
fingerprint survival probabilities.

3.2.2 Notation

For the ease of exposition, we introduce a notation to describe transactions
based on their number of shielded and transparent inputs and outputs. We
denote a Zcash transaction as

(Sin . tin | Sout * tout)

where s;, and s,,; are the number of shielded inputs and outputs, respectively,
and similarly, t;, and t,,; are the number of transparent inputs and outputs.

Depending on the number of shielded and transparent inputs or outputs,
transactions are then divided into hiding t-to-z, fully shielded z-to-z and reveal-
ing z-to-t transactions as follows:

e t-to-z: t;y; > 1 and s,y > 1 and negative balance value (hiding)
o 2-to-2 8;, > 1, 8o > 1 and t;, =teu =0

e 2-to-t: s;, > 1 and t,, > 1 and positive balance value (revealing)

3.2. The Model for the Probability of Fingerprint Survival 45

Some example transactions: (0-111-0) is a hiding t-to-z transaction with
1 transparent input and 1 shielded output; (1-:012-0) is a fully shielded z-to-z
transaction with 1 shielded input and 2 shielded outputs; (2-0/1-1) is a z-to-
t (partially) revealing transaction with 2 shielded inputs and 1 shielded and
1 transparent output.

3.2.3 Sapling Transactions Dataset

Our dataset of transactions includes all hiding, fully shielded and revealing
Sapling transactions occurring from block 419,200 (mined October 29, 2018
when the official Sapling fork happened) to block 472,285 (mined January 29,
2019).

The distribution of these collected transactions is reported in Table 3.4, row
All. Since we are mainly interested in transactions that more likely occur as coin
transfers between non-miner users which are not already linkable with a direct
unique value match, we removed the following transactions from our starting
database:

e Mining activities: when a block is successfully mined, the miners have to
transfer their rewards to a shielded address before being able to spend them,
hence creating lots of hiding transactions. Many miners transfer their shielded
mining rewards directly to transparent addresses, thus creating many reveal-
ing transactions. Using the heuristics from Chapter 2 we have been able
to trace 6,827 hiding t-to-z transactions and 5,718 revealing back to miners’
public addresses.

e Direct unique value matches: where a hiding transaction is directly followed
by a revealing transaction with same unique value (Heuristic 1), i.e. the paths

(0-111-0)-(1-010-1)

We have found 37 such transactions.

e 1-Hop fingerprint matches: the paths
(0-111-0)-(1-011-0)-(1-010-1)

where a hiding transaction with a unique value is directly followed by a re-
vealing transaction with a unique value, where the value difference is equal to
10,000 Zatoshis, the standard transaction fee (Heuristic 2). We have found
676 such transactions.

e Small value transactions: we noticed that while there were 2,436 t-to-z trans-
actions with total transparent value less than 1 ZEC each (for a total hiding
value of 841.74 ZEC), there were only 286 z-to-t revealing transactions with
an overall value lower than 1 ZEC (for a total value of 68.76 ZEC). Check-
ing the discrepancy between these two numbers, we have found that there
were 3 transactions of the form (>10-0/0-1) and 25 transactions of the form

46 Chapter 3. Further Transaction Linking in Zcash

(>10-011-1), where >10 indicates that there are more than 10 shielded in-
puts. The total number of shielded inputs of these 28 z-to-t transactions is
1,756 for an average revealed value of 39.97 ZEC (total revealed value 1119
ZEC). Assuming these 28 transactions were independent, the ratio between
the revealed value and the number of shielded inputs is 0.45 ZEC (weighted
median) and 0.64 ZEC (weighted arithmetic mean). Since the Zcash offi-
cial wallet, when combining spends, takes them in decreasing value order,
we speculate that these spends are mainly small value spends (less than 1
ZEC) which are collected and eventually combined with few higher value
ones® before being transferred to a transparent address. Our speculation is
enforced by the fact that in 25 transactions out of 28, the revealed values are
round, e.g. 3, 5, 30, 35, 40, 50, 120 ZEC. In other words, there are many
small values which are collected and then spent as soon as their total value
is close to certain round amount of ZEC. Due to the unusually high number
of combined shielded inputs, we suspect that these transactions are related
to mining activities (e.g. transparent fractions of mining rewards that are
shielded and sent to mining pool members) and can be then traced back to
t-to-z transactions whose total value is less than 1 ZEC. Thus we have opted
to ignore 2,436 small value t-to-z transactions® and 314 z-to-t transactions.

All these dataset updates are summarized in Table 3.4 resulting after all
the removals in 1,613 t-to-z hiding, 1,570 fully shielded and 1,633 revealing
transactions. The distribution of different types of transaction in the final
dataset is reported in Table 3.5.

Assuming that all t-to-z transactions are independent, we can then approx-
imate the average number of transaction-hops Zlen for a generic path in the
shielded pool as the ratio between the sum of all transactions types that have
at least 1 shielded input and 1 shielded output and all the t-to-z transactions.
We then obtain Zlen ~ 1.42.

A path in the shielded pool goes through transaction-hops that have at least
one shielded input and one shielded output: in Table 3.6 we reported the most
frequent types of these transactions (= 95.8%) along with their distribution and
the corresponding survival probability of good fingerprints observed in all pub-
lic blockchain data. More precisely, given a transaction (s;, -t | Sout - tour)
happening in the shielded pool, we set the corresponding survival probability of
a good fingerprint to be equal to the fingerprint survival probability observed in
the transparent transactions of the same input-output degree (0 - s;,+t;, | 0 Sout+tous)
multiplied by the probability that the fee ends with 4 zeroes (= 96.8%), i.e. the
fee doesn’t affect the fingerprint.

Similarly, we report in Table 3.7 the relative distribution and survival fin-
gerprint probabilities for the most frequent exit nodes (= 96.9%), i.e. revealing
z-to-t transactions.

Given a path z = xy — ... — x, — Tpy1 € ZPaths(n + 1), where z4,...,x,,
are transactions inside the shielded pool while z,1 is a revealing transaction,

5This could also explain why the revealed value of 1,119 ZEC is greater than 841.74 ZEC,
the overall total hidden value of small value t-to-z transactions

6Tt is not statistically relevant which ones are removed, since 99.8% of t-to-z transactions
are of the single input-single output form: (0-111-0).

3.2. The Model for the Probability of Fingerprint Survival 47

t-to-z | z-to-z | z-to-t
’ All 11,589 | 2,246 | 8,408
Remove Mining 47762 | 2,246 | 2,690
Remove Direct Matches | 4,725 | 2,246 | 2,653
Remove 1-hop Matches | 4,049 | 1,570 | 1,977
Remove Small Values 1,613 | 1,570 | 1,663

TABLE 3.4: Number of transactions after each corresponding dataset update.

t-to-z z-to-z z-to-t

Type | # Type | # Type | #
(0-111-0) | 1,694 || (1-011-0) 699 (1-010-1) 664
(0-t]s-0) 15 (1-012-0) 491 (1-011-1) 504
(s-tls-0) 4 (2:012-0) 176 (2:010-1) 224
(2:011-0) 78 (2:011-1) 129
(3-:011-0) 36 (3-:010-1) 54
(3-:012-0) 21 (3-:011-1) 36
(s:0ls-0) | 69 (stl0-t) | 31
(s-tls-t) 21
Total 1,613 1,570 1,663

TABLE 3.5: The transaction distribution of our final dataset. The s and t repre-
sents all the remaining number of input/outputs possible.

it is now straightforward to estimate both P(F'P | x) and P(x) and, ultimately,
P(FP).

Indeed, assuming each transaction is independent and considering only paths
r made by the most frequent types of transactions, we have that P(x) =
[T P(x) = ([12, p(a:)) - (0.958™ - 0.969), where p(x;) denotes the proba-
bility to have a transaction type equal to x;, i.e. the values in column “%” of
Table 3.6 and 3.7. Similarly, P(FP |x) = H?jll prp(z;), where prp(x;) denotes
the fingerprint survival probability for transaction x;, which are again reported
in Table 3.6 and 3.7.

Letting Z Paths'(n+1) C ZPaths(n+1) be the set of paths consisting of the
most frequent transactions types reported in Table 3.6 and 3.7 and modeling
P(Z=n)= W by a Poisson distribution with parameter Zlen, we obtain
an estimation for the overall fingerprint survival probability as:

k

P(FP)%ZW-(3 IP(FP|x)-IP(x))

n=0 x€Z Paths’ (n+1)

Letting k = 5 we obtained P(F'P) ~ 16.6%

48 Chapter 3. Further Transaction Linking in Zcash

Fingerprint Survival
Type | # | % gPﬁ)bability
(1-011-0) | 699 | 0.318 0.968
(1-011-1) | 504 | 0.230 0.475
(1-012-0) | 491 | 0.224 0.475
(2-012-0) | 176 | 0.080 0.155
(2-011-1) | 129 | 0.059 0.155
(2:011-0) | 78 | 0.036 0.204
(3-011-0) | 36 | 0.016 0.086
(3-011-1) | 36 | 0.016 0.066
(3-012-0) | 21 | 0.010 0.066

TABLE 3.6: The relevant z-to-z and z-to-t transactions where at least some coins
stay shielded. The last column is the survival probability of a fingerprint based on
the public blockchain data.

Fingerprint Survival
Type | # | % gPﬁ)bability
(1-010-1) | 664 | 0.412 0.968
(1-011-1) | 504 | 0.313 0.337
(2-010-1) | 224 | 0.139 0.155
(2-011-1) | 129 | 0.080 0.204
(3-010-1) | 54 | 0.034 0.086
(3-:011-1) | 36 | 0.022 0.066

TABLE 3.7: The relevant z-to-t transactions where some coins are revealed. The
last column is the survival probability of a fingerprint based on the public blockchain
data.

3.3 Danaan-Gift Attack (Malicious Value Fin-
gerprinting)

Fingerprints (Section 3.1.3) can be used as a tool for linking the hidden and
revealed values of shielded transactions. In this section we show that in some
scenarios they can be exploited for transaction tagging by an active attacker.
Suppose the attacker is trying to identify the spending of a public address,
which converts all its ZECs to hidden addresses regularly. The attacker can
transfer a very small but carefully chosen amount of Zatoshis to this specific
address, hoping that it leaves the trail of a fingerprint when they are converted
from a hidden to a public address. As the attacker sees the current public
value on the address, he sends a chosen value such that the resulting sum has
a detectable and possibly long-living (Section 3.1.3.1) fingerprint. Of course
different fingerprints could be used for different addresses. Afterwards the at-
tacker only has to monitor the revealing transactions for his set of fingerprints.
He may also enhance it using the subset sum approach and reason in terms of

3.4. Dust Attack 49

anonymity sets rather than unique matches.

Such attack can be performed against entities which accept public donations
(e.g. WikiLeaks) since for them receiving money from an unknown source would
look less suspicious. Moreover the attacker may monitor the address and resend
the fingerprint in case another donation erases his old tag.

Our statistical model can be applied to provide a chance for success against
an average user. As we show in Sections 3.2, 3.2.3 the probability for a finger-
print to survive if it is revealed in some way is around 16%. This means that
the attack succeeds with a 16% chance if the target behaves as an average user.
Compared to the low cost” of the attack, we consider it as a real danger for
Zcash users. As a countermeasure one should avoid de-shielding unique or rare
values and should zero the digits below the transaction fee threshold. In the
long run depreciation of the public t-address pool should solve the problem.

3.4 Dust Attack

Sapling shielded transactions reveal their in/out degree, i.e. the exact number
of spent and output notes. The output notes would be the unspent transaction
outputs (UTXOs) in Bitcoin terminology. This also means that if a user converts
all of his/her shielded funds to a public address from a previous output note,
it will show in the transaction that there are no new output notes, i.e. all the
value from the spent notes are public. Shielded transactions that spend more
than 10 outputs are very rare (35 out of 22,249 in the three months of the study
period).

Using this information, we discovered an attack that would be able to track
one extra hop of shielded spending. If that spending does not have public
outputs, we can only verify when the object of the attack used its funds. The
attack is the following.

First, the attacker learns the shielded address of the target user either by
buying services from a user who has a shielded address or donating to an entity
who accepts shielded Zcash. Then the attacker transfers funds in many small
valued output notes. This can be done in two ways. The first way is by issuing
many separate transactions to a target address either from separate addresses,
or from the same address by slicing small values one after another. The second
way is by transferring the funds in a single transaction with lots of spend notes.
This is not supported directly by the official wallet (it returns an error as it
does not allow the same address to appear more than once as an output even in
a shielded transaction). However a custom wallet where this check is removed
can easily do so. We have tested it on the Zcash testnet and the transaction
was accepted.

Later, if the target user wants to spend its shielded coins, it has to create a
shielded transaction, which can be monitored on the chain, where the number
of spend notes is unusually high. At present, in the official wallets the user can
not choose which outputs it wants to spend when creating a transaction. The
wallet, instead, orders all available unspent shielded outputs connected to the

"Considering that 10,000 Zatoshis are worth 0.7 US Cents, if the exchange rate is 70 USD.

20 Chapter 3. Further Transaction Linking in Zcash

address in a decreasing manner and picks them one-by-one until it has enough
value to cover the desired total output value.

This means that even if the user notices this unusual behaviour in his/her
wallet, there is currently no way to avoid these dust-spending outputs. As a
countermeasure, the user should always do an extra hop inside the shielded pool
if his z-address received transactions from external sources. This would consol-
idate all the outputs into a single spend note, removing the dust-tag. Such a
transaction itself would be noticed by the attacker, but no further tracking is
possible if there were no public outputs in that transaction. This countermea-
sure does not require any customization from the wallet as it is a simple shielded
transfer, but it is dependent on whether the user notices the attack. We have
executed the attack on our own addresses on the Zcash testnet®.

Heuristic 4. An attacker tags a target address with more than n > 10 dust
outputs. If later he observes that the input-degree of a shielded transaction is
at least n, then he links the transaction to the target address.

Let us now investigate how the attack is presented (based on our experiment)
to the target in the different Sapling-supporting wallets.

3.4.1 Official Linux Command-line Zcash Wallet

As the official Linux RPC wallet is command line based, the user will only notice
this behaviour by specifically checking for it. There are separate commands
for getting the total balance for all addresses or a specific one and, similarly,
a command for listing the received outputs per address (which includes the
already spent ones) and another one to get all currently controlled unspent
outputs under all addresses. Thus, it depends on the users whether they check
the correct attributes of their wallet and whether they notice the strange dust
values. If a user checks for the received transactions, all outputs will show as
separate transactions, despite having the same ID.

By listing the received transactions or unspent outputs, one can see the
IDs of the transactions and, if the attacker sent all the outputs in the same
transaction, this might alert the user.

3.4.2 GUI-based Sapling-supporting Wallets

All the currently existing GUI wallets show the recent transactions on the home
page of the wallet. This means that all the dust outputs are shown as separate
transactions, even when they were sent in the same shielded transaction. These
programs only show the time of the transactions. The user does not see the
transaction details (not even the id) in the software, instead it has to copy the
transaction to receive the id or go through a link to an online explorer to discover
that they are exactly the same transaction. From the time of the transactions
it is visible that all of them were made at the same time, which could also be
an indicator of malicious behaviour.

8txid: 48b364¢082f90ae5860ad52a876eae37c84ed0cbb7cf4279dea2fd2a243bachh

3.5. Usage of zk-SNARKs 51

15/10/18- | 15/01/19-
29/10/18 | 29/01/19
Num of Transactions 52,438 41,961
Num of Sprout Txs 7,241 3,592
Hidden Value 129K ZEC | 81K ZEC
Without Mining Rewards | 25K ZEC | 23K ZEC
Num of Sapling Txs 0 4,748
Hidden Value 0 67K ZEC
Without Mining Rewards 0 50K ZEC

TABLE 3.8: Sapling zk-SNARK usage

3.4.3 Combining Danaan and Dust Attacks

An attacker might combine these two attacks, where some of the dust values
also contain a fingerprint, and their sums are fingerprinted as well. This way,
even if the dust attack follows only one hop of shielded values, the fingerprint
later might still reveal the values when and if the coins are revealed.

3.5 Usage of zk-SNARKSs

Let us investigate the usage and adoption rate of Sapling transactions compared
to Sprout transactions.

From Table 3.8, we notice that even though the number of transactions
decreased, the usage of shielded transactions from regular users mostly switched
to Sapling transactions and the main remaining users of Sprout transactions are
miners and mining pools who did not change their use practices yet.

3.5.1 Interaction Between Sapling and Sprout Transac-
tions

Another aspect of the adoption rate for Sapling transactions is how many
users have transferred their values from a Sprout shielded address to a Sapling
shielded address. To investigate this, we have checked how many transaction
outputs of a shielded Sprout transaction were spent directly as an input to a
Sapling shielded transaction.

We have found 241 such outputs, hidden in 213 transactions overall. Al-
though this might not seem as a huge number of transactions, in total value
they cover more than 46K ZEC, which is more than 20% of all Sapling hidden
value not related to mining rewards (212K ZEC) since the time of the Sapling
hard fork.

Another question is whether these revealing transactions can be tracked by
the linking methods presented previously in Section 3.1. The recommended

52 Chapter 3. Further Transaction Linking in Zcash

method of coin transfer is described on the Zcash website’, where the presence
of this linkability is mentioned, warning users and suggesting methods to avoid
it by splitting the values into smaller round denominations and moving them
with certain delays.

3.6 Summary and Conclusions

In this study we have shown some privacy issues in the Zcash cryptocurrency,
mainly utilizing the hiding and revealing transactions that convert coins between
the private and public part of the blockchain. We have also shown two novel
active attacks - Danaan-gift attack and Dust attack - against Zcash user privacy,
and we have provided a theoretical model and a statistical analysis for their
success likelihood. We have reinforced the notion that Zcash is not just a black-
box solution, where if a user uses the shielded transactions, it has constant
strong privacy. Instead, we show that even the users of Zcash have to put some
care into how they use the shielded transactions, and how they transfer coins
between the public and private parts of the blockchain.

We would like to provide some general suggestions for the users of Zcash to
try to avoid linkage using any of these methods. First, if a user has to pay coins
to a shielded address and all of its coins are in public addresses, the user should
either shield the coins in multiple transactions, or shield more coins than it needs
to transfer to avoid issues in case the receiver of the coins would reveal them in
the future. Users should avoid using the default transactions fee. They should
also pay attention to the number of outputs they control in shielded outputs, as
spending all of them together leaves a visible trace on the blockchain. Finally,
it is also safer to hide and shield coins with round values, where at least the
last 4 digits of the value shoud be zero, especially if the economic value of those
digits is negligible.

We also note that before the publication of the work we have contacted and
provided the work to the Zcash developers as part of our responsible disclosure.

9Sapling Turnstile - https://zcash.readthedocs.io/en/latest/rtd_pages/sapling_
turnstile.html

https://zcash.readthedocs.io/en/latest/rtd_pages/sapling_turnstile.html
https://zcash.readthedocs.io/en/latest/rtd_pages/sapling_turnstile.html

53

Chapter 4

Privacy of Miners in Zcash and
Ethereum

In a PoW based blockchain, the most important entity is the group of min-
ers who create the new blocks with the new transactions. Without them, the
blockchain would not exist. We have mentioned mining before, and the evolu-
tion of both the mining community and mining hardware.

In Bitcoin and several other blockchains most mining uses application-specific
integrated circuits (ASICs). On the other hand there are chains that aim to
prevent ASICs and use ASIC resistant Proof-of-Work that favor GPU mining.
One reason behind this decision is the attempt at making the chain more de-
centralized. This study mainly focuses on two such chains, namely Ethereum
and Zcash. In these chains ASICs have been introduced at the time of this
study, and while in Zcash they have become the de facto mining equipment, in
Ethereum there is still visible GPU mining. We have introduced Zcash in detail
before, but we have not mentioned Ethereum yet. We will not describe it in
detail, as that is not needed for the scope of this research, but we will mention
its main attributes and differences to Bitcoin.

Ethereum is the second largest blockchain after Bitcoin, but with a dif-
ferent scope and target. It does not use the UTXO transaction structure,
instead it utilizes an account balance based one. Furthermore, it provides a
more sophisticated scripting system on the blockchain, where even Turing com-
plete code is executable on the chain as a contract. These contracts are called
smart contracts, and a user can interact and trigger events in the contract by
sending transactions to it. Usually they are used as financial contracts, where
some events can trigger different events and payouts to some users, for example
auctions or gambling. Smart contracts provide a larger application space for
blockchain solutions, that were not possible with Bitcoin. On the other hand,
the consensus protocol behind Ethereum is a PoW style protocol, with GPU
mining and mining pool dominated space. Thus it lends itself to empirical
studies on the mining infrastructure.

In this study we describe a general landscape of miners in these chains
using both blockchain and mining pool information. This includes describing
the most popular hardware per chain, what the distribution of mining power
between miners is, and how GPU mined coins compare to each other in terms
of profitability.

Following that, with the introduction of ASICs, questions arose whether
hidden ASIC mining existed in the chain before the announcements of such

54 Chapter 4. Privacy of Miners in Zcash and Ethereum

hardware. We have developed methods that might be able to detect hidden
ASIC mining based on mining software developer fees and the distribution of
the mining power. In the observed chain (Zcash) we could give a bound on
hidden ASIC mining (showing no significant hidden ASICs). The same met-
rics did change drastically after the public introduction of ASIC hardware to
the network. We have also studied how the introduction of ASICs effects the
decentralization of mining power.

Using the previously acquired knowledge on miners in these chains and the
public blockchain information, we describe how an attacker might deduce the
individual mining rewards and the mining hardware of a single miner, violating
the privacy of miners. We also provide some countermeasures, with which
miners might mitigate the leakage of privacy by the choice of a mining pool and
the usage of their rewards.

We performed most of the study in May of 2018, with some follow-up
mesaurements in the following months. This chapter is based on joint work [BF19a]
with Alex Biryukov.

4.1 Terminology

There is some terminology that we have to introduce first. First, we have already
described what a mining pool is. Mining power means the amount of hashes an
entity can solve in a fixed amount of time. As mining is a probabilistic protocol,
higher mining power means higher likelihood of solving the cryptographic puzzle
first. Let us also reiterate how the pools estimate the power of their members
and how they pay them. Mining pools do not require their members to solve
the full cryptographic puzzle in the PoW protocol, instead the members have
to solve a weaker version of the same puzzle. If a member has a solution for this
weaker puzzle, it sends that solution to the pool. These weaker solutions are
called shares, and they are used to estimate the mining power of the members.
In principal, every such share has an intrinsic value in coins compared to the
value of reward for mining a block. If one of the shares is a solution to the full
cryptographic puzzle, the pool will distribute the found block in the network
claiming the block reward. Usually the mining pool takes a fee for operating
costs of around 1% from the payouts.

In practice, the members of the mining pool do not have the blockchain
downloaded, and they are not responsible for creating the blocks. The blocks
and the transactions in them are all first created by the mining pool, and they
only send the block header information to the miners, reducing the communi-
cation costs. From time to time, the miner will receive a new header to mine on
top of. In most mining pools a miner is gathering value in the mining pool by
submitting shares, and once this value reaches a preset threshold, the mining
pool pays the miner in a payout transaction. This payout transaction usually
contains payouts to multiple miners at the same time, to reduce the number
of transactions required from the mining pool. How the cumulative value is
calculated and when the mining pool pays the miners depends on the pool’s
payout structure, but these structures are not important for our analysis and
thus they are not part of this work.

4.2. Background and Related Work b}

From the miner’s point of view, the miner uses mining machines that are
usually referred to as mining rigs or just rigs. These rigs can be ASICs, or from
single GPU to purpose built 10-12 GPU computers as well. The miner can
group its mining rigs into so-called workers on the mining pool monitoring site.
The idea behind this grouping is easier monitoring for the miner that all of its
rigs are performing as expected. These workers are configured by the miners
themselves, so they can vary in distribution. Some miners have a dedicated
worker configured for every mining rig they are running for easy monitoring,
but we have seen cases where a miner with huge mining power only has one
worker configured on the mining pool.

4.2 Background and Related Work

Mining pools have been receiving attention in recent research, but mostly from
a game-theoretic point of view. Eyal et al. [ES18] introduced the selfish miner
attack, where colluding miners obtain a revenue larger than their fair share,
which proves the Bitcoin protocol is not incentive compatible. For the attack
only 1/4 of the mining power is required, compared to the previous 1/2 bound.

Later Eyal in [Eyal5] provides a game theoretic analysis on competing min-
ing pools attacking each other by seemingly joining the opposing pool, but not
providing any actual Proof-of-Work. The paper calls the decision whether to
attack the opponent pool or not the miner’s dilemma. Later Tsavary and Eyal
extended this work in [TE18].

We have not seen an in-depth analysis of mining pools and miners in the
literature and thus we provide it in this chapter. Our analysis is mainly based
on two mining pools which have pools in both Ethereum and Zcash. These are
the pools run by BitFly called Ethermine for Ethereum and Flypool for Zcash,
and Nanopool for both Ethereum and Zcash. We have chosen them because the
average and current power of each worker per miner is accessible through their
API, if an attacker learns the exact Zcash or Ethereum address of the miner. In
order to obtain the list of addresses in case of Ethereum an attacker can scan
the chain for recently sent transactions from the pools’ main address. We have
collected over 100,000 addresses. In case of Zcash, we used the methods shown
in section 2 to retrieve the mining payout transactions and build up a database
of miner addresses, which consists of ~25,000 addresses.

4.3 Mining Landscape

At the time of writing, Ethermine was the largest, while Nanopool was the
third largest Ethereum mining pool. Flypool was dominating the Zcash mining
power with over 50% hash rate until the introduction of ASICs, and is currently
the number five mining pool, while Nanopool was the second largest pool, but
is now ninth in rankings.

As these pools had an open API, we were specifically interested in the work-
ers, their momentary and average power, and their names, as we have noticed
that miners often name themselves after the hardware itself. Overall we have

56 Chapter 4. Privacy of Miners in Zcash and Ethereum

acquired detailed worker information for 21,000 miners in Zcash and 52,000 in
Ethereum. In these data sets we searched for the keywords of the card numbers
or names. If we reduce the workers to ones that have a descriptive name, the
dataset is reduced to roughly 10% of all the workers. Combining the average
hash rates of these workers with the reported rates for different kinds of hard-
ware, we can attach specific hardware to specific hash rates. Ethereum and
Zcash use two very different ASIC resistant Proof-of-Work algorithms called
Ethash and Equihash respectively. Their hash rates are measured in Mhashes
per second for Ethash and solutions (Sol) per second for Equihash.

4.3.1 Ethereum

First, let us investigate Ethereum. Notice the periodic peaks in the histograms
(Figure 4.1,4.24.3,4.4). These peaks represent the number of GPUs in the
worker. For example in the case of the GTX 1050 we can distinguish 6 separate
peaks at 14, 28, 42, 56, 70 and 84 Mhash/s respectively. Also notice that
the peaks are getting wider. This can be partly explained by the deviation
getting larger by having more GPUs. On the other hand, as the miners over-
or underclock their cards by different amounts, these differences add up and
create larger gaps between the configurations.

GTX 1050

n 0
(0] 0]
<< <<
5 540
=10 =
k) k)
g5 820
€ £
> S5
=2 I =2
% 20 40 60 80 100 % 20 40 60 80 100
Mhash/s Mhash/s

FIGURE 4.1: Histogram of hash rates FIGURE 4.2: Histogram of hash rates
in Ethereum for the GTX 1050 GPU in Ethereum for the GTX 1060 GPU

. .80 RX 580

8% g

515 = 60

= =

510 %5 40

g g

E 5 E 20

=) =)

=2 =2

% 20 40 60 80 100 % 20 40 60 80 100

Mhash/s Mhash/s

FIGURE 4.3: Histogram of hash rates FIGURE 4.4: Histogram of hash rate
in Ethereum for the GTX 1070 GPU in Ethereum for the RX 580 GPU

Overall the most popular cards are the RX 580, RX 570 and GTX 1060 with
around 6,000 workers for each. The exact data and the other cards that are

4.3. Mining Landscape

57

worth mentioning, are presented in Table 4.1. The dominance of AMD based
cards is expected, as they are reputed to be better suited for Ethash.

Hardware | Num | Hardware | Num | Hardware | Num
GTX1050 | 631 | GTX1050ti | 856 GTX1060 | 5800
pl106 1543 | GTX1070 | 3327 | GTX1070ti | 616
GTX1080 | 855 | GTX1080ti | 1023
RX460 656 RX470 3713 RX480 1650
RX560 1084 RX570 6068 RX580 6273
TABLE 4.1: Number of times a card name has been recorded in our chosen

4.3.2 Zcash

In Zcash the most popular card is the GTX 1060 with different configurations,
depending on how many of them are in a rig. The periodic peaks are observable
here as well (Figure 4.5,4.6,4.7,4.8), although in this case the difference between
the hash rate of cards is much larger than in Ethereum. The dominance of
NVIDIA GPUs is expected, as they are reputed to be better suited for Equihash.

Number of Workers

Ethereum mining pools

GTX 1050
10.0
7.5
5.0
2.5
0.09"""200 400 600 800
Sol/s

1000

FIGURE 4.5: Histogram of hash rates
in Zcash for the GTX 1050 GPU

Number of Workers

GTX 1070
10
5
% 200 400 600 800
Sol/s

1000

FIGURE 4.7: Histogram of hash rates
in Zcash for the GTX 1070 GPU

GTX 1060
040
(0]
<
§30
"620' ik
o W
£10 i
=)
=z
% 200 400 600 800 1000
Sol/s

FIGURE 4.6: Histogram of hash rates
in Zcash for the GTX 1060 GPU

GTX 1080
wn
%-’15
=
=10
o
g5
€
3
=2
% 200 400 600 800 1000
Sol/s

FIGURE 4.8: Histogram of hash rates
in Zcash for the GTX 1080 GPU

28 Chapter 4. Privacy of Miners in Zcash and Ethereum

The larger difference in hash rate between cards provides a better distinction
between the different rigs. In Table 4.2 we present the most popular rig config-
urations and their hash rates, while in Table 4.3 we present the most common

cards and the number of times they appear.

Hash rate | Suspected Hardware | Hash rate | Suspected Hardware
150 Sol/s GTX1050 870 Sol/s 3xGTX1060
2xGTX1080
270 Sol/s GTX1060 1100 Sol/s A CGTX1060
2xGTX1080TTI
450 Sol/s GTX1070 1400 Sol/s E GTX1060
GTX1080 3xGTX1080
550 Solfs | oarxioen | MTOSVS | geaTxi060
700 Sol/s GTX1080TI

TABLE 4.2: Hash rates and their hardware counterparts

Hardware | Num | Hardware | Num | Hardware | Num

GTX1050 327 | GTX1050ti | 183 | GTX1060 | 1783

GTX1070 791 | GTX1070ti | 207 | GTX1080 | 918
GTX1080ti | 617 GTX970 157

TABLE 4.3: Number of times a card name has been recorded in our chosen Zcash
mining pools

4.3.3 GPU Mining

At the time of Zcash’s launch, and in the following two years, GPU mining
in general became popular. There were multiple blockchains, which used the
same hash function for their PoW. One of the more popular hash functions was
Equihash, the same one is used in Zcash. Equihash uses multiple parameterized
setups, resulting in different difficulties for the hardware, which should also
result in different difficulties developing an ASIC for a specific version of the
function.

In order to build a more complete picture we investigated Equihash and
GPU mining in general, to have a better understanding of the dynamics of min-
ing. First, we built an overview of the total Equihash-based mining ecosystem
by adding up hash rates of every major blockchain using the same version of
Equihash as its PoW. We show the total Equihash hash rate of these chains
in Figure 4.9. We have identified Zcash (ZEC), Bitcoin Gold (BTG), Zencash
(ZEN) and Zclassic (ZCL) as the main chains. If a chain doesn’t appear on
the graph until a certain point in time, it is either because it didn’t exist be-
fore (Bitcoin Gold), or its hash rate was only marginal (less then 5 MSol/s')

15 MSol/s is 5,000,000 hashes (Equihash solutions) per second.

4.3. Mining Landscape 59

compared to current Zcash. The huge increase in Zclassic’s power in January
and February 2018 is caused by a huge price increase during that time. This
price increase was the result of the launch of a new blockchain - Bitcoin Private
- at the time, which was forking off of the Zclassic chain. Some of this power
temporarily migrated from Ethereum or other GPU-mined coins.

The most notable feature of this graph is the exponential increase in mining
power from June-December 2018 which is due to the introduction of ASIC

miners in Zcash.?

w
o
Q
o
=

8l
o
o

)
o
b
f——
=
(¢

Qe
)

LN
o
S
S
=
(¢

e
*

i

! M'

.“.'.'..'.-‘-". w.*.‘lM\r‘-v. Wi
"Dec Mar Jun' 'Sep 'Dec Mar Jun Sep Dec
2017 2018

FIGURE 4.9: Overall Equihash mining power over time (Purple: Zcash, Blue:
Bitcoin Gold, Green: Zencash, Red: Zclassic)

One more observation regarding GPU mining is comparing Equihash mining
to other ASIC-resistant PoWs. We have chosen Ethereum and Monero?, as they
are among the largest GPU mined coins. We compare the hash rate and the
profitability of these Blockchains in Figures 4.10-4.11 by converting all rates into
Sol/s. This is done by comparing the mining capabilities of the same GPUs on
the different PoWs. The interesting observation in this graph is that even when
there was a peak in Equihash mining (Oct 2017), compared to the sum there
is no visible difference. This is caused by brief miner migration from Ethereum
mining to Zcash mining for better profitability.

Figure 4.11 also shows that after the introduction of ASICs in Zcash, the
profitability curve has crossed the GPU-profitability line (green line "BASE”),
calculated assuming an electricity price of 0.05 USD/kWh. Following graphs
confirm that there are probably no GPU miners left in Zcash.

2A small bump in the graph in Oct 2017 can not be explained directly, but is most likely
a result of temporary ETH miner migration when ETH difficulty was rapidly increasing due
to a difficulty-bomb. It went back to normal when the difficulty bomb was defused by an
Ethereum hard-fork.

3By popular belief Monero’s CryptoNight algorithm had hidden ASIC mining which was
forked off. A large mining power drop after the fork is visible in the graph.

60 Chapter 4. Privacy of Miners in Zcash and Ethereum

5000 MSolfs

4000 MSol/s

3000 MSolfs

2000 MSolfs

1000 MSol/s

FIGURE 4.10: Sum of total power of (formerly) GPU-mined blockchains (Purple:
Zcash, Dark Blue: ZenCash, Light Blue: Bitcoin Gold, Green: Zclassic, Orange:
Monero, Yellow: Ethereum)

4.3.4 GPU vs ASIC mining

Both chains (Zcash and Ethereum) use ASIC resistant proofs-of-work which
favor GPU mining in order to keep mining decentralized. This, however, has
changed with the recent introduction of ASIC miners for these chains around
May-June 2018. The ASIC over GPU efficiency improvement was around 2-5x
for Ethereum’s Ethash, and 10-30x efficiency improvement for Zcash’s Equihash.

4.4 Detecting ASIC miners

On May 3 the ASIC manufacturer Bitmain announced an ASIC miner for Equi-
hash (followed shortly after by Innosilicon). Bitmain is one of the biggest ASIC
provider companies in the world, while also having large shares in mining power
in Bitcoin, and other large cryptocurrencies. These announcements raise the
questions of when did these companies develop an ASIC, and did they launch
and test it on Equihash-based cryptocurrencies before the announcement. Were
ASIC miners present in the Zcash mining ecosystem before their official ship-
ment dates, and if yes, to what extent? The following two techniques were
aimed at trying to answer these questions. First we show our techniques only
until June 2018, as the ASIC hardware only started shipping then. Later we
show how the metrics we presented changed with ASICs.

4.4.1 Fraction of large miners in the mining power

Using the techniques presented earlier in the thesis (Chapter 2) one can link
most of the mining reward transactions. It is also relatively straightforward to

4.4. Detecting ASIC miners 61

Profitability

wn

3 10t

wn

A4

—

S L
< 10— ETH

© XMR

) —— ZEC v
(0]

= T - BASE \“v

1 -1
26/01/2017 14/08/2017 02/03/2018 18/09/2018

FI1GURE 4.11: Profitability in USD of different chains originally using GPU mining.
(Red: Zcash, Blue: Ethereum, Orange: Monero, Green: GPU profitability line)

approximate the mining power of an address based on the rewards it gets. First
we take the amount of coins an address received in a payout transaction since
the last time it received a payout. Then, we check how many blocks were mined
between the two payout transaction, and sum up the block reward coins during
this time. Finally, we can estimate the average mining power of the blockchain
during these blocks based on the puzzle difficulty in every block (as in Zcash,
the difficulty is updated after every block). Then, if we take the fraction of the
received coins by the miner over the overall mined coins in the same time and
multiply that with the average overall mining power, we get an approximate
Hash rate for the specific miner.

This approximation can be used to monitor and sum up the power of larger
miners in the ecosystem in Figure 4.12, where we define a larger miner as having
over 8KSol/s Hash rate. We show this graph with some added information
containing the exact fraction of large miners, and the daily exchange rate as
well. We used 8Ksol/s as our threshold because the reported Hash rate of the
developed ASICs at the time was 10KSol/s.

Analyzing this information, we can see that even though the fraction can
change over time, it was quite constant in the last 5 months (Jan-May 2018).
Prior to that there is another period of about 5 months (Jul-Nov 2017) when the
fraction of large miners was slowly increasing and then suddenly switched from
0.6 to 0.4. The drop is probably explained by miners switching to ZClassic, as
that coin had a sudden increase in price due to a fork mentioned earlier. We
can not rule out ASICs either, but ASICs should have the opposite effect, as
their minimum Hash rate is 10KSol/s.

4.4.2 Mining Software Developer Fees

At the launch of Zcash, there were no ASICs available as the Equihash version
implemented in Zcash was considered ASIC resistant. It was designed to be

62 Chapter 4. Privacy of Miners in Zcash and Ethereum

FraT

Hashrate

tionWVal 1e

500MSol,

(/)

400MSol,

()

300MSol/s

200MSol/s

00MSol/s

y

Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct
2017 2018

FIGURE 4.12: Estimated portion of large miners with mining power of at least
8KSol/s, with the exact fraction in green and the ZEC/USD exchange rate in blue
added

mined with GPUs. As GPUs are not purpose built hardware, instead a general
processing unit, the software run by the GPU became just as important as the
hardware itself. This lead to a competition among mining software developers
to create the most efficient program for Equihash mining. There were some
projects that were open-source programs, but the most efficient ones were closed
source. This of course meant that these closed source programs became the most
popular. However, in contrast with open-source software, the closed source
programs had a built-in developer fee, which could not be removed due to their
closed nature.

This developer fee (dev-fee) became generally 2% of the mining rewards, and
enforced by requiring the miners to use the developers address for mining for 72
seconds every hour (2% of an hour). Even though the developers usually tried
to obfuscate this address, we could find the fee addresses of all the major GPU
software miners. We found these addresses partly by searching through mes-
saging boards of the community, and partly by reverse engineering the software
looking for these specific built-in addresses. Then, we can estimate the mining
power of these addresses based on the approach in the previous section, and
then multiplying this power by 50 for the 2% rate*, which yields an estimate
of the mining power for GPU Equihash miners. The interesting and important
point is that there were other blockchains that used the same Equihash variant
as Zcash, which meant that miners mining these chains used the exact same
software as Zcash miners. However, the dev-fee mining was still performed on
the Zcash addresses, meaning we have to compare the estimated GPU mining

4At the beginning various miners had different fees at the start from 2-15% but it seems
they converged to 2% over time.

4.4. Detecting ASIC miners 63

power from dev-fees to all Equihash based currencies combined mining power.

We have produced this graph as well (Figure 4.13), where it shows about 80%
rate for the first 6 months, and than reduces to about 60%, to later increase
again to 80%. With this we can give an estimate that at least 80% of the
Equihash mining power till May 2018 was provided by GPUs.

M
i

! “!I VIgk) I'l'

T o
“ W WWM i W"
Wl

™

™ Dec Jan Feb arArManJIAgSpOcthDanFb ar Apr May
201 2018

FIGURE 4.13: Lower bound of GPU mining power based on the developer fees

(Green: Claymore, Blue: EWBF, Purple: dstm, Light Blue: Bminer, Orange:

Optiminer, Red: Remaining Hash rate). The green line presents the covered per-
centage.

From the month April 2017 there is a big difficulty increase (from about 50
MSol/s to 200 MSol/s) but only a modest dev-fee fraction decrease from 0.8 to
0.6. ASIC or FPGA mining would have a different effect. Explanation could be
that large farms learned to disable dev-fee or (more likely) a good free miner
has appeared or we did not find some extra dev-fee address. The exponential
difficulty increase is most likely caused by the ZEC price hike.

We also see almost linear increase from July 2017 until March 2018 and in
the last 3 months a slight linear decrease in Figure 4.9. However secret ASIC
or FPGA linearly growing dominance should show as a linear decrease in the
dev-fee ratio in Figure 4.13, which we do not observe.

CAVEAT: Dev-fee is an interesting metric, but if it is known to the ad-
versary, it can be cheated by sending a fraction of the ASIC mining results as
fees to dev addresses. Also we hope that developers of software miners do not
run mining rigs pointed to the same addresses - this is unlikely but can not be
completely ruled out.

4.4.3 Public Introduction of ASICs

At the start of June 2018 the first ASIC miners were shipped by the companies
Innosilicon and Bitmain, which means the previous two methods can be used

64 Chapter 4. Privacy of Miners in Zcash and Ethereum

to inspect the data when it is known that there are ASICs in the network. As
seen in Figure 4.15 the proportion of large miners have visibly increased and
below 35KSol/s miners disappeared from the network.

Recent Mining Power and Devifee

FIGURE 4.14: The change in projected

mining power from dev-fees for the

overall Equihash hash rate following
Figure 4.13 in time.

FIGURE 4.15: The change in mining
power distribution inside the mining
pools following Figure 4.13 in time.

The projected GPU mining power from developer fees have also exponen-
tially decreased as seen in Figure 4.14, which is a predictable effect of ASIC
dominance over the mining landscape and GPUs becoming unprofitable.

4.5 Mining Centralization

The decreasing projected power from dev-fees and the increasing overall hash
rate lead to questions about the decentralization of mining power for Zcash as
an effect of the introduction of ASICs. To have a more detailed view on the
problem, we have investigated the attributes of mining power in mining pools
in more detail in the Zcash and Equihash ecosystem.’

If we take a look at the graph of the proportion of large miners, the increase
of large miners is obvious, while the actual number of average daily recorded
miners that we have recorded went down from around 60,000 in the middle of
April to around 13,000 by the end of November 2018 (Figure 4.16). It is visible
that miners started leaving in the beginning of June 2018, and that tendency is
still observable. This also shows how the introduction of ASICs might alienate
GPU miners from a chain, resulting in a more centralized mining infrastructure.
The picture has to be taken with a caveat, since theoretically a GPU miner with
several mining rigs could point them to different mining addresses, though this
is not very likely.

>The appearance of a close to 40% mining power in the beginning of June 2018 resulted
in questions from the community about who could have such a large mining stake as an
unidentified solo miner. Two weeks after its appearance its power was distributed into 2
separate addresses (later to even more addresses, while now it is under one address again),
but probably it was controlled by the same entity all the time.

4.6. Privacy of Miners 65

s0o00otie uaiss. NUMDbeET Of Miners Per Day

"

-Less than 5KSol/s
-Less than 35KSol/s
-More than 35KSol/s

June October

FIGURE 4.16: Number of daily recorded miners in mining pools since April 2018.
The number of small miners using probably only one rig has decreased from 50,000
to 5,000, while the middle portion has decreased from 10,000 to 4,000.

4.6 Privacy of Miners

Miners might not want to reveal any information about themselves, especially
if they are mining on a blockchain like Zcash, where privacy is the main feature.
In that case mining on pools like Flypool or Nanopool is not advisable, as the
information is publicly available for anybody who knows the miner’s address.
On the other hand we can still deduce most of the mining pool payouts from
the public blockchain, which leads us to the question what we can learn about
a miner if the only thing we see about them are their mining rewards on the
blockchain?

4.6.1 Linkability of Mining rewards

Based only on blockchain information, we could record thousands of miners’
approximate hash rates. As described earlier, one can estimate the mining power
of a miner based on the payouts it receives. Furthermore, the more rewards the
miner gets, the more precise our estimate can be. We do this analysis on GPU
miners but it can be done for ASIC miners as well. First we have recorded
the power of all the miners. The ones under 3.5 KSol/s are displayed in the
following histogram, where the width of a column is 5 Sol/s. This graph is not
the power of separate addresses, but the sum of every recorded mining power
that we found. This means that if a miner had multiple payouts to the same
address, then every single payout (after the first one) is an estimation of mining
power, and the graph is the histogram of all of these estimates.

It is noticeable that the histogram follows a sum of independent Gaussian
distributions, also called the Gaussian mixture model (mining follows a Poisson
distribution, but if the distribution’s A parameter is large enough, it can be

66 Chapter 4. Privacy of Miners in Zcash and Ethereum

] O 1000 1500 2000 2500 3000 3500
Sol/s

FIGURE 4.17: Histogram of recorded hash rates in Zcash. The striped line is the
Gaussian fitting. The separate colours are the single Gaussians.

approximated with a normal distribution). The obvious peaks are at 150, 270
and 550 Sol/s, etc. which correspond to popular mining cards or rigs, so one
could manually or algorithmically fit a sum of Gaussians with different weights
onto the histogram.

Gaussian decomposition (Figure 4.17) confirms the results we observed ear-
lier about popular cards/rigs in Table 4.2. We consider this as a validation
of our metrics, and it means that an attacker might be able to extract more
information from the recorded hash rates, if all those rates are connected to
the same miner. Based on these values an attacker can observe how stable a
miner’s hash rate is. If there is a significant increase of power, that stays the
same for a long time, one can suspect that new hardware has been added to the
miner’s farm. As we have a general idea of the possible rigs and hardware, we
can reduce the list of possible new hardware (Figure 4.18).

From this information an attacker might deduce at what time a shipment
of GPU or ASIC hardware was delivered to the miner. It might relate to
geographical relations as well. For example if there is a GPU shortage, there
might be information on when different regions receive their new batches of
specialized hardware. Correlating it with increases in mining power might reveal
information on the geolocation of a miner. Vice-versa, from increases in mining
power one might deduce the batch schedules of the hardware manufacturer.

4.6.2 Countermeasures

As the accuracy of an attacker’s measurements depends on the regularity of
rewards, we suggest using a large reward payment threshold, as the fluctuations
in the global hash rate combined with the irregularity of payouts could generate
enough noise for the miner’s power to be difficult to estimate correctly.

4.7. Summary and Conclusions 67

Example for Changing Mining Power
Sol/s

. MWWWMM i

600 L f\«[\4

400

200

Time

FIGURE 4.18: Example for the case where a miner adds new hardware to its mining
rig. In this case the power increases from around 600 Sol/s to around 850-900 Sol/s,
which suggests that the miner added a GTX 1060 GPU.

Next, even though instant payouts might sound user-friendly for a mining
pool, it results in even more transparency. We also suggest frequent change of
mining addresses, limiting the data points for the attacker.

The drawback of constantly using new addresses is that when the miner
wants to spend his/her coins, it should not do it in a single transaction from all
of the addresses, because if all the addresses are inputs to the same transaction,
then an attacker knows that all those addresses are controlled by the same
entity. Instead, in the case of Zcash our suggestion is converting the coins to
hidden z-addresses. In Ethereum one might consider mining to a smart contract
instead of a direct account, and then withdrawing the coins from the contract.
This approach would be still visible on the chain, but it is a bit harder to follow
for an attacker, as it would involve analyzing the byte-code.

4.7 Summary and Conclusions

In this chapter we have presented an overview of decentralized GPU mining in
cryptocurrencies. We have studied the most popular mining hardware, while
also investigating the effect of the introduction of ASICs into the mining ecosys-
tem. We have provided methods that could be used to detect hidden ASIC
farms in a network, and verified their effectiveness in practice. We have also
shown how the overall effect of ASICs and reduced exchange rates damage the
decentralization of mining power, leading to a disappearance of over 75% of the
miners in Zcash.

Finally we have shown how using only blockchain information an attacker
can learn the hash rate of a miner and might even deduce the structure of
their mining rigs, reducing their privacy. This study helps to expose privacy

68 Chapter 4. Privacy of Miners in Zcash and Ethereum

vulnerabilities in the current mining ecosystem which is crucial for privacy-
preserving currencies and privacy-conscious users.

69

Chapter 5

Estimating Exchange Traffic

The transaction graph of Bitcoin is constantly changing and evolving. At the
start, there were only a handful of transactions in every block, and there were no
official markets to exchange or buy coins. Nowadays almost every block in the
chain is full with transactions from exchanges to payment channels. This large
increase in transaction volume is largely related to the traffic of the exchanges in
the blockchain. In order to determine how large portion of transactions are from
exchanges, first we have to identify the addresses related to them. To perform
this identification, first, we will use some form of grouping or clustering of the
addresses. In this study we have used the BlockSci [KML"20] toolkit to perform
our analytics.

We say an entity controls an address, if it knows the private key to the
corresponding public key. Then, we call a group of addresses a cluster, if all of
the addresses in the group are controlled by the same entity. A cluster can differ
in size starting from a few addresses to up to millions. In fact, the largest cluster
we found contains 16,492,872 addresses. Most of the huge clusters are operated
by exchanges. The reason for that is the following. Most exchanges provide a
unique address for each of their users, furthermore a user can request multiple
addresses from the exchange. If a user receives or sends itself coins to these
exchange provided addresses, the coins usually do not stay connected to them
as an unspent output. Instead, exchanges store the account balances of their
users internally in their database, but they move the real coins between their
controlled addresses to perform their other transactions. These transactions
may include coin withdrawals from users to addresses that are not controlled
by the exchange. They can also be large volume trading between different
exchanges, or just simply organizational transactions between the exchanges’
addresses.

In general there are three main types of addresses that an exchange uses.
The first type is the hot wallet, which contains the addresses that are the
most active on the blockchain. These addresses perform most of the day-to-day
transactions on the chain. Usually it is fairly easy to find them, as they are
addresses with thousands of transactions connected to them, which is quite rare
in a blockchain. The second type is the cold wallet, which are addresses that
contain the exchange’s reserves. Usually these addresses have a lot of coins
stored on them, but they do not perform many transactions. The third type is
the user addresses, where the users can send their coins, but usually exchanges
move the funds from these addresses to either of the other two types.

70 Chapter 5. Estimating Exchange Traffic

In this research we were interested in the behaviour of the exchanges on the
blockchain. To observe this behavior, first, we had to cluster their addresses.
There have been multiple approaches to clustering in the literature ([RH11b,
AKR™13,LF16, MPJ"13a,SMZ14, CBL17]), but we used the simplest one first
proposed by Reid and Harrigan [RH11b], which we deem to be the most efficient.

In this clusterization, if there are multiple addresses as inputs in a Bitcoin
transaction, the creator of the transactions has to know the private keys of those
addresses (i.e., it has control over those addresses) to generate the transaction.
This leads to clustering of addresses per address control, referred to as co-spend
or multi-input clustering.

Once we have the co-spends from transactions, the clustering is quite simple
using a basic intersecting sets algorithm. If there are multiple transactions with
multiple input addresses, and some of these address sets overlap, then all the
input addresses in these transactions are controlled by the same entity. Then,
with the simple intersecting set algorithm that checks every transaction in Bit-
coin that ever happened, one could group and cluster all addresses. The only
false positives generated by this algorithm are CoinJoin transactions, which
work as a mixing service, trying to hide the real inputs and outputs of a trans-
action. On the other hand, for our purposes (i.e., exchanges, large clusters), the
effect of these transactions on clustering is very low.

We have performed this clustering and decided to investigate large clusters
with at least 10,000 addresses in them, as our intuition dictates that exchanges
would operate with such large clusters. First, we were interested in what portion
of Bitcoin transactions are related to these clusters. Up to block 604,685 (Nov
2019) we have found 912 such clusters. A transaction is related to such a cluster
if any of the input or output addresses is part of any of the 912 identified clusters.
As the Bitcoin blockchain has changed a lot over time, we have only performed
our measurements and studies from block 500,000, which results in an almost
two year long period from December of 2017 to November of 2019. In this
period, there were 192,933,996 transactions and of them 98,631,677 (51.12%)
were directly related to a cluster that had more than 10,000 addresses in it.

The main questions for this study were the following. Are these clusters all
exchanges, and is there a way to verify that?

5.1 Evaluating Identified Clusters

The inspected time-span for classifying clusters is from Dec 2017 to Nov 2019, a
close to 2 year period (precisely 701 days) from block 500,000 to block 604,685.
We have acquired the reported exchange volume per day for Bitcoin for 168
different exchanges for this time. This report, obtained from the CryptoCom-
pare [ccol9] service, sums up every Bitcoin exchange pair on these exchanges
(e.g., BTC/USD, BTC/ETH).

Then, we tried to identify Bitcoin addresses associated with exchanges, using
existing databases, scanning online forums for addresses, and transferring coins
to the exchanges ourselves. If we found such an address, we checked whether
that address is indeed in one of our large clusters. If there was such a cluster,
we hypothetically connected the cluster to the specified exchange. Note, that in

5.1. Evaluating Identified Clusters 71

Poloniex
30000 — chain traffic
reported traffic
25000
Correlation = 0.739
20000
|
15000
10000
| ‘L‘ w |
50001 1] M | N | |
I R SR ‘H\Wwﬂw NM"WWM L NI
0 L VATAV ALY VA A T T

2019-10-05 ?’

2017-12-14
2018-02-12
2018-04-13
2018-06-12
2018-08-11
2018-10-10
2018-12-09
2019-02-07,
2019-04-08
2019-06-07,
2019-08-06

FIGURE 5.1: Poloniex’s reported and chain traffic for the entire 701 day period.

some cases, we found multiple clusters for the same exchange. Overall we have
found probable clusters for 32 different exchanges, which include the well-known
(e.g., Bittrex, Binance) and smaller exchanges (e.g., LocalBitcoins, Mercado
Bitcoin).

Using these clusters, we compared the daily exchange traffic reported by the
exchange with the actual coin traffic on the chain itself. In the rest of the study
we will refer to the coin traffic that happens on the chain itself as chain traffic
and to the one that we acquired from CryptoCompare as reported traffic. The
chain traffic is the sum of every in and outgoing coin from the entire cluster
per day, i.e., if a coin is moving between addresses of the same cluster, it is not
counted. The comparison between the reported and the chain traffic involved
multiple approaches to find out which one is the best performing for pairing
the two different traffics. Our first approach was a simple correlation statistic
between the two datasets, i.e., the daily reported traffic of an exchange and
the daily sum of in and outgoing bitcoins for the respective cluster (or in a few
cases clusters). First, we compared the identified clusters to their respective
reported traffic over the entire 701 days period. A specific example is Poloniex
(Figure 5.1), which shows a correlation of 0.739 over the entire 701 day period.
We found that only 4 showed (Table 5.1) any meaningful correlation between
the reported traffic and the chain traffic, where we claim meaningful correlation
over 0.6.

The next highest correlation value is 0.575 with the Vaultoro exchange. The
meaningful correlation of these four exchanges leads us to a question: Is it
possible to pair an unidentified cluster to a specific exchange by this method?
To examine this question, we first performed a correlation statistic between all
32 reported traffics, to examine the uniqueness of data for these exchanges.

72 Chapter 5. Estimating Exchange Traffic

’ Exchange \ Correlation ‘

Bitstamp 0.771
Poloniex 0.739
BitTrex 0.701

Kraken 0.685

TABLE 5.1: The four highest correlation values between the reported and observed
on the chain data over 701 days

What we have seen is that the volume of reported exchange traffic can
change similarly across multiple exchanges. The trends of the market are the
main driving force behind these similarities in traffic changes. The result of
these trends is that plenty of datasets have a strong correlation with each other
(Table 5.2).

Poloniex | BitTrex | Binance | Huobi

Poloniex 1 0.956 0.222 -0.040

BitTrex 0.956 1 0.223 | -0.024

Binance 0.222 0.223 1 0.724
Huobi -0.040 -0.024 0.724 1

TABLE 5.2: The correlation values between the reported daily exchange volume
between a selected set of exchanges

As one can see, there are multiple different behaviors visible. There are
cases, like Poloniex and BitTrex, where their daily trading volumes have a solid
correlation. On the other hand, the opposite can happen as well, for example,
Poloniex and Huobi, where there is no correlation. Finally, we also have similar
correlation values to what we have seen in Table 5.1, like between Huobi and
Binance. We note that there is a clear distinction between western and eastern-
based exchanges.

The result of these trends is that if we try to correlate the reported traffic
with the observed chain traffic for every identified cluster, in some cases, the
highest correlation pair is not the identified exchange-chain traffic pair. If we
look at the 4 exchanges in Table 5.1, then the actual best match based on
correlation might be a different exchange (Table 5.3).

’ Exchange \ Best Match \ Correlation ‘

Bitstamp | Bitstamp 0.771
Poloniex Korbit 0.789
BitTrex Korbit 0.726

Kraken Luno 0.718

TABLE 5.3: Exchanges from Table 5.1 and the highest correlation pair among all
inspected exchanges

We have noticed, that there are high correlation matches where the actual
volumes are very different, which leads us to the introduction of a second metric

5.1. Evaluating Identified Clusters 73

for comparison. We compare the value of the two datasets, as the correlation
metric only measures the similarities in the change of value between two sets
of data. We calculate this new metric as follows: for every daily value, we take
the absolute difference of the reported and the chain traffic, divide that by the
reported volume and multiply it by 100 for easier readability. When we have
this new value every day, we simply take the median of them. This metric
represents the median fractional difference between the reported and the chain
traffic, and we will refer to this value as MFD for the rest of the study:

|R; —
R;

where n is the number of observed days, R; and C; are the reported and chain
traffic on the ith day. We chose the reported traffic as the fixed divisor, because
it is not dependent on the accuracy of clusterings and chain measurements, and
provides a stable point of comparison.

With this new metric, we have tried multiple heuristics to see what would
result in the highest number of best matchings, where the best match is the real
world pair. We have divided the approaches into two separate main categories.
The first one chooses the best correlation first while the second the smallest
MEFED. Then we use the other method to make the final selection. For example,
we take the chain traffic of an exchange and compute the correlation with all
other exchange traffic data. Then we choose the highest value, and take that
and every other pairing that is close to it (i.e., less than 0.1 away). Afterwards,
we calculate the MFED for these pairs and choose the pair with the lowest MFD
as the best match.

The other way would be to choose the lowest MFD first, and if there are
multiple ones around the same value, then we choose the highest correlation as
our final pairing. Of course, none of these methods will be perfect, but they
can sometimes provide better results than others. On the other hand, we could
still only match six exchanges perfectly.

Our heuristics’ last refinement was the realization that some clusters that
we identified did not stay active for the entire 701 day period. This inactivity
lead us to the method where instead of finding the best pairing in the entire 701
day observed time, we looked at shorter continuous periods with the previously
described two methods. We have tested our datasets with 31, 61, 91, 121, 182,
241, and 361 day long intervals, and we were again interested which ones would
result in correct pairings between the reported and the chain exchange traffic.

After testing the previously mentioned techniques on these time intervals,
we have found that correct pairings came from the approach of first finding
the highest correlation value per pairing with the chosen interval length, then
keeping all pairs that are less than 0.1 away from this best correlation pair, and
then choosing the one with the lowest MFD as the best matching (Heuristic 4).

Interestingly, most correct pairings resulted from the 61 day long intervals,
more than when we observed the entire 701-day long interval. Our explanation
of why this time-span is best, is that less then 60 days introduces too many
other exchanges for close comparison. The noise and inaccuracy of the data
leave multiple exchanges too similar to each other. On the other hand, on a

MFD:Medicm< -100,i:1,...,n>

74 Chapter 5. Estimating Exchange Traffic

Algorithm 4 Heuristic for finding the best Exchange pair to a cluster C' over
n day long intervals

procedure MATCHEXCHANGE(C'n)
CorrPerExchange = ()
for £ € Exchanges do
CorrPerExchange < BestCorr((C,E,n))
end for
BestCorr = Max(CorrPerExchange)
Selection = ()
for £ € CorrPerExchange do
if |BestCorr — E| < 0.1 then
Selection < E
end if
end for
BestMatch = MinMFD(Selection)
return BestMatch
end procedure

procedure BESTCORR(C,En)
MaxCorr = —1, MaxStartDay = 0
for (i,i+n) € C,E do
Corr = Correlation(Ci; itn), Eiitn))
if Corr > MaxCorr then
MaxCorr = Corr, MaxStartDay = i
end if
end for
return MaxCorr, MaxStartDay
end procedure

5.2. Classifying Large Clusters 75

Bitstamp

— chain traffic

reported traffic

40000
Correlation = 0.8999

MFD = 28.626
30000

20000

ot

2018-09-18=
2018-10-18
2018-11-17

FicURE 5.2: Bitstamp’s reported and chain traffic for the best matching 61 day
period

longer time-span, the likelihood of the exchange using another cluster increases,
which results in this 2 month-long period.

Figures 5.2, 5.3 and 5.4 are some examples for correct matches using 61 day
long intervals. Overall there were 8 perfect matches, and 2 matches where the
real pair was the second or third best match (Bitstamp, Kraken, Kuna, Liqui,
LocalBitcoins, Poloniex, The Rock Trading, Vaultoro and for second or third
Huobi and Mercado Bitcoin).

The only similar result was when the inspected period was 241 days. In that
case, there were seven perfect matches and another four top 3 matches, but out
of those eleven, only five were new matches (removed were four exchanges:
Huobi, Liqui, Vaultoro, TheRockTrading; the five new exchanges were: ZB,
CoinBene, Luno, FCoin and Binance).

5.2 Classifying Large Clusters

As we have mentioned earlier, our definition of a large cluster is a group of
addresses where the same entity controls the addresses, and the number of
addresses in the cluster is at least 10,000. Utilizing the previously described
heuristic (Heuristic 4), one could try to identify which of these clusters are
exchange clusters and which ones are not. In the history of Bitcoin up to block
604,685, there have been 912 such clusters.

Some of these clusters became inactive even before December 2017. Of these
912 clusters, only 698 have been active during the period between block 500,000
and 604,685, but we need active clusters for at least 31, 61, or 241 days in a
row. There are, in fact, 523, 462, and 292 such clusters, respectively. We chose

76 Chapter 5. Estimating Exchange Traffic

Kraken
50000
— chain traffic
reported traffic
40000
Correlation = 0.9291
MEFED = 29.646
30000
20000
10000 A //\
VAR Y4 \/\ O / \\Jﬂ\/“)
0 J
— — S
N Q N
3 2 =
0 % %
S g =

FiGUrE 5.3: Kraken’s reported and chain traffic for the best matching 61 day
period

LocalBitcoins

1200

—— chain traffic

reported traffic
1000

800

600

400
Correlation = 0.4814

200 MEFD =97.17

2018-06-29
2018-07-29
2018-08-28

FIGURE 5.4: LocalBitcoins’ reported and chain traffic for the best matching 61
day period

5.3. Summary and Conclusions 77

the 61 and 241 day intervals for their accuracy in correct pairings. We selected
31 days for generally having the highest correlation and lowest MFD values,
as even if the interval does not provide the most correct pairings, it is a good
indicator for the attributes of a cluster.

The question is, of these 523 clusters how many of them are exchanges. Our
best answer is dependent on the correctness of the pairing. If the correlation is
over 0.8 and the MFD is less than 40%, we consider it a confident guess that
the cluster is indeed an exchange. On the opposite end as well, if no pair is over
0.3 correlation, we conclude with confidence that the cluster is not an exchange.
Clusters can be a good match with over a 0.6 correlation, but the area between
0.3 and 0.6 is the trickiest. In our previous observations, we have seen cases
where the exchange paired with itself as the best pairing, but the correlation
was only barely over 0.5. On the other hand, no other pairing was close to it in
terms of correlation.

Table 5.4 shows the distribution of these large active clusters. The first
row shows the number of clusters active for at least as many days in a row as
the column indicates. The second row shows the number of clusters paired by
having their thresholds at 0.8 correlation and 40% MFD. The third row shows
clusters that we paired with a correlation value between 0.6 and 0.8 and an
MFED with less than 60%. The fourth row is correlation values between 0.4 and
0.6, while the MFD is less than 80%. The last row shows the number of clusters
with a maximum MFD of 99% (to limit pairings where the size of volumes have
nothing in common), and the best correlation pair is less than 0.3, or if there
is no pairing where the MFD is less than 99%.

31 days | 61 days | 241 days
Active Clusters 523 462 292
Over 0.8 95 34 6
0.6-0.8 172 143 50
0.4-0.6 152 152 109
Under 0.3 17 31 38

TABLE 5.4: The categorization of large clusters based on different time spans

The reason for the steep decrease in good matches can be explained by our
observation of confirmed exchanges. There we have seen similar behavior, as the
shorter observed time frames resulted in higher correlation values and matching.

5.3 Summary and Conclusions

Again, we have to mention that the goal of these matchings is not to find
precisely which cluster is which exchange. We have shown that that can easily
lead to mismatches. Furthermore, there are multiple cases where an exchange
might use multiple clusters at the same time. Our goal is to identify which
large clusters are operated by exchanges in general. In our opinion clusters in
the second and third row in Table 5.4 are operated by exchanges with a high
likelihood, and similarly, any cluster in the last row is likely not an exchange.

78 Chapter 5. Estimating Exchange Traffic

The most difficult pairings to judge are the ones in the middle territory, but
with this approach saying anything more descriptive about them is difficult.

On the other hand, as we have seen with certain exchanges, this approach is
another way to try to confirm the reported traffic of an exchange. Surprisingly,
even if one assumes that most of the transactions in the reported traffic happen
only on the exchange (as they do not need to happen on the chain, the exchange
just makes the transfer on its internal database), they are comparable in terms
of volume. How these volumes - both the reported and the chain traffic -
change also follows similar patterns, which is the attribute we try to represent
with the correlation metric. Of course, these values can be manipulated by an
exchange by doing fake transactions on the chain, and it is hard to identify that
this behavior is indeed happening. Nevertheless, even in cases where the volume
was mostly different, and the best correlation was not convincing (LocalBitcoins,
Figure 5.4), it still provided the best match with itself. We are not claiming
that the reported exchange volume of e.g., LocalBitcoins is fake, as we could
have missed other clusters that are controlled by them, but it is an interesting
clue for further study.

Part 11

Consensus Protocols in
Blockchains

79

81

Chapter 6

ReCon

Distributed consensus protocols, where several equal nodes establish an agree-
ment on a sequence of operations, have been known since at least the 1980s
with the appearance of the first distributed databases. Over time, protocols
that tolerate faulty nodes (FT protocols, for fault tolerance [Lam98, OO14])
and later the ones that tolerate malicious nodes (BFT protocols, for Byzantine
fault tolerance [LLSP82]) were developed [CL99, AMQ)13]. However, their appli-
cation was limited as such databases have been typically constrained to a single
enterprise, which can use a trusted leader to facilitate the agreement.

The Byzantine Agreement protocols tolerate up to one third of all nodes be-
ing malicious. This is satisfactory for a private system, but does not work when
we design a public system with free membership. The situation changed drasti-
cally with the introduction of Bitcoin [Nak09], which revolutionized consensus
protocols by using the Proof-of-Work concept (PoW). A Bitcoin node solves
a computationally hard problem to decide which operations (transactions) to
apply. The Proof-of-Work consensus tolerates malicious nodes as long as they
constitute no more than 51% of the computational power or as some more con-
servative analysis estimates 25% of the computational power [NIKKMS16]. There
are drawbacks to using PoW protocols as well: the two most used protocols, Bit-
coin and Ethereum [Wool4], support up to 10 transactions per second at most,
which is a great difference to thousands of transactions per second achieved in
regular Byzantine Agreement protocols such as Tendermint [Bucl6] or in pri-
vate networks [vis15]; the electricity needed to perform cryptocurrency mining
is also reaching new heights, as now it is comparable to the consumption of Ire-
land [de 18]; transaction confirmation time may take up to an hour (although
it is still faster than wire transfer across continents).

Another crucial issue for open consensus protocols is their vulnerability to
Sybil attacks. If there is no cost to join a network, that network will always
be prone to classical Sybil attacks. There are multiple protocols that provide
safety in an open network against this kind of attack. For example, in PoW this
resistance is provided by the cost of mining. In Proof-of-Stake style systems the
adversary needs to obtain a large enough stake in the currency to perform such
attacks. In general all the different Proof-of-X style protocols require a proof in
order to prevent Sybil attacks. We provide a new protocol that leverages node
reputation in order to enhance Sybil-resistance of consensus protocols.

Reputation systems are abundant in our society from online auctions and
marketplaces like eBay, Amazon, credit ratings like Standard & Poor’s, Fitch,
Moody’s to social networks and even academic citations. They are forgeable

82 Chapter 6. ReCon

to different degrees, but in many cases it takes long time and effort to earn
reputation and often there is a monetary value associated with it. In some
cases monetary stakes can be used directly for ranking or reputation. One may
also assume that reputation correlates with honest behavior if the setting can
detect and punish malicious behavior.

We design a proof-of-concept protocol which we call ReCon (Reputation
Consensus)— a protocol which can bootstrap from some hard to forge reputa-
tion source!, suggests committee members based on their reputation, and this
reputation is then updated over the rounds of the consensus protocol. The pro-
tocol is built on top of a blockchain, where multiple attributes of blockchains
are utilized. In a nutshell, ReCon selects the committee in a randomized way
to enable diversity and increase the cost of a Sybil attack, slightly increases the
committee member’s reputation if a round succeeds and significantly reduces
the reputation if a round fails. Furthermore, the reward mechanism is built
in such way that it stops giving rewards after a certain number of successful
consensus rounds - namely if all goes well, keeping the status quo is the best.
This is not fair to the newly joined honest nodes, but also keeps any Sybil
from increasing the reputation of its nodes. The eventual reputation inversely
correlates with maliciousness. We show that this method prevents not only
a simple adversarial strategy when malicious nodes always try to disrupt the
protocol, but also a smarter one, when such nodes act only if they constitute
1/3 of the committee or even only after 2/3. Since ReCon quickly penalizes
the reputation rating of the validators which couldn’t reach consensus, the best
adversarial strategy is to wait for a supermajority of 2/3 of committee nodes.
Our scheme is thus secure in the environments where these situations are ruled
out, e.g., when the chance of obtaining 2/3 majority in any reputation-selected
committee is very low (controlled by security parameter A). As a module, Re-
Con can be laid on top of many existing distributed consensus protocols such
as PBFT [CL99], HoneyBadgerBFT [MXC™16], or Zyzzyva [KADT09] opening
them to a larger pool of permissionless validators.

Even though our protocol doesn’t solve all the problems with the classical
PoW chain, it does provide an alternative which drastically reduces the cost of
entry to the network and reduces the energy waste, while still providing strong
resistance against Sybil attacks.

We have implemented a proof-of-concept simulator of ReCon, which takes
the number of nodes, the committee size, the initial reputation and the prior
"maliciousness” probability as inputs and returns the reputation distribution
and the posterior probability of being malicious. We also examine the case when
external reputation is not available (this could be of interest if the Sybil attacker
is not present at the early stages of the protocol - allowing the honest users
time to acquire reputation). Experiments prove that our approach compares
favourably to the other methods of detecting maliciousness by sample testing
and maximum likelihood. Computational complexity of the reputation module
itself is constant in each round and for each protocol node (update of reputations
for a constant number of validators, typically - 100).

!Maintaining such source of Sybil-resistant reputation is a separate interesting research
topic.

6.1. Existing Consensus Protocols 83

The chapter consists of the following sections. First we describe the cur-
rent state of the art in consensus protocols that either use some form of rep-
utation or use blockchains to provide an open peer-to-peer consensus protocol
(Sections 6.0.1, 6.1). Afterwards we present the preliminary requirements and
assumptions of our protocol (Section 6.2). We then provide the detailed de-
scription of the protocol itself (Section 6.3), followed by our proof-of-concept
simulation results (Section 6.4). Finally we consider the different attacks against
the protocol based on our assumptions (Section 6.5). This chapter is based on
joint work [BF20] with Alex Biryukov and earlier collaboration with Dmitry
Khovratovich.

6.0.1 Related Work

The literature on the reputation systems is vast and is beyond the scope of
this chapter. All webpage ranking systems, for example, fall into this category
with PageRank [PBMW99] being a classical example. An interested reader is
referred to flow-based reputation systems adapted for P2P networks (Eigen-
Trust [KSGO3]), subjective logic-based schemes [LI.J 711}, or privacy-preserving
designs, both coin-based [ACBMO08] and not [LMAG™15]. There are also works
considering a rational entity in a Byzantine Agreement protocol like the BAR
Primer [CLNT08], which can be represented as a reputation protocol as well.
Our work has a more narrow focus as we do not consider individual ratings but
work on the meta-protocol level by analyzing global events — consensus decisions
only. This allows sophisticated methods to apply easily in the decentralized way.

6.1 Existing Consensus Protocols for the
Blockchain Environment

There is a vast and quickly evolving body of work on consensus protocols for
open peer-to-peer protocols that use the blockchain primitives to achieve their
goals. Let us present a few of these protocols to show the trends in this research
area.

6.1.1 Proof-of-Work

We have already presented the PoW protocol in detail (Section 1.2.3), but let us
reiterate its most important features. The idea for intensive computations as a
countermeasure against spam was first proposed by Dwork and Naor in [DN92]
and denial of service (DoS) protection in the form of a TLS client puzzle by
Dean and Stubblefield [DSO01]. The amount of work is certified by a proof, thus
called Proof-of-Work. Perhaps the simplest scheme is Hashcash [Bac02], which
requires a hash function output to have certain number of leading zeros and are
adapted within the Bitcoin cryptocurrency. To avoid centralization, the PoW
finding process (mining) must be stochastic, where the probability of the proof
generation at any given time is non-zero and independent of previous events.
Therefore, mining must be close to a Poisson process with the number of proofs

84 Chapter 6. ReCon

found in a given timeframe following the Poisson distribution and the running
time of the algorithm Ap following the exponential distribution:

T(Ag) ~ Exponential(A\(R)).

The Poisson process is often emulated by the difficulty filter: a fixed-time al-
gorithm B, which additionally takes some nonce N as input, is concatenated
with a hash function G, whose output should have a certain number of trail-
ing zeros. In this case, the algorithm B must also be amortization-free, i.e.
producing ¢ outputs for B should be ¢ times as expensive. Such PoW-based
consensus protocols have a completely asynchronous structure and is widely
used in cryptocurrencies, although they are relatively slow and wasteful. PoW
is secure until the malicious entity has at least 51% mining power, although
there are more recent attacks, that would reduce this to 25% [NKMS16]. The
PoW-based protocols are also permissionless, which makes them a very good fit
for the cryptocurrency environment.

6.1.1.1 Variants of Proof-of-Work

The example of Bitcoin has shown that PoWs based on standard cryptographic
hash functions are prone to mining centralization due to a mining hardware arms
race. One direction is to make memory-hard PoWs which would provide ASIC
resistance, and thus would reduce mining centralization [P.J16]. Such PoWs are
used in Ethereum [Wool4], Zcash [BK16], and several other cryptocurrencies
(Litecoin and its forks use Scrypt, Monero uses CryptoNight, etc.). There are
also some recent theoretical results on memory-hardness of scrypt-like construc-
tions [ACPT17,BCS16].

6.1.1.2 From chain to DAG

There are existing PoW algorithms where instead of a chain the main struc-
ture of blocks form a DAG (directed acyclic graph), e.g. the Ghost proto-
col [SZ13]. The Ghost protocol is a simplified DAG, and it is implemented in
Ethereum. Ghost introduces uncles apart from direct father blocks, meaning
that the newest block does not have to be directly chained from the last block,
but it can be chained from one of the previous relatives as well. On the other
hand, the distance between a new block and its uncles is restricted, thus limiting
the complexity of the DAG.

6.1.1.3 Variants of Proof Protocols

To reduce the energy waste of the PoW protocol, some works proposed alterna-
tives to the wasteful mining, but kept the main concept of a stochastic process
to determine the creator of the next block. One of these concepts is the Proof-
of-Space [DFKP15] protocol, where the verifier has to prove the usage of large
storage, ex. dedicated hard disk space. Other similar variants are Proof-of-
Burn [KKZ20], where the verifier has to prove the burn of some amount of

6.1. Existing Consensus Protocols 85

currency with transferring funds to a verifiably unspendable address. Yet an-
other idea is the Proof-of-Bandwidth protocol proposed to incentivize donating
bandwidth to the Tor network.

And yet another recent concept is Intel’s Proof of Elapsed Time consen-
sus [int17], based on the tamper resistance of SGX enclaves which restores the
one-CPU one-vote principle. The drawback however is that such a consensus
mechanism requires trust in a single hardware manufacturer.

6.1.2 Proof-of-Stake

Another actively developed consensus protocol concept is Proof-of-Stake (PoS),
where the creation of the newest block is not dependent on the hashing power,
but on the amount of currency, or in other words stake possessed by an entity.
The next block validator is randomly chosen, where the likelihood of being
elected is equal to the ratio of the owned and overall existing currency. It is
also a permissionless protocol, and removes the computational waste of PoW.
On the other hand it introduces new vulnerabilities, such as the tragedy of
commons or the nothing-at-stake attack, where a node can participate in every
fork on the chain as there is no penalty for such behavior, compared to the
computational waste in PoW. A PoS protocol is secure when the malicious
entity controls less then 50% of the stake.

The best example for PoS algorithms is the Ouroboros family of provably
secure PoS protocols [KRDO17, DGKRI18, BGK™18].

6.1.3 Byzantine Agreement

The classic case of byzantine agreement (BA) was first introduced in [LSP82].
Suppose there is a decision committee, in which the members vote which trans-
actions they accept and send their votes to everybody in the committee, while
having some cryptographic proof (MACs or digital signatures) of the validity
of their messages. BA protocols are permissioned, as the participants need to
know the public key or the MAC key of all the members. They are generally se-
cure if less then 1/3 of the members are malicious. Making them permissionless
would leave them vulnerable to Sybil attacks.

6.1.3.1 PBFT

The first practical implementation of a BA protocol in a weakly synchronous
network was PBFT [CL99]. It uses a leader, who selects a set of transactions
to be accepted. If the leader acts maliciously, a leader change can be triggered
with more than 2/3 of the committee members participating. The strength of
this construction is its throughput, as it is capable of thousands of transactions
per second, but it requires some weak or eventual synchrony, and it is efficient
only with a small number of nodes (up to 100).

86 Chapter 6. ReCon

6.1.3.2 HoneyBadger

HoneyBadger [MXC™"16] is a probabilistic asynchronous BA protocol, optimized
for larger committees. It has to be probabilistic, as it is well known that deter-
ministic asynchronous BA protocols are impossible. It is implemented for 104
nodes, and has better performance than PBFT.

6.1.3.3 Federated Byzantine Agreement

Federated Byzantine Agreement protocols are similar to regular BA protocols,
but instead of verification from 2/3 of all the nodes, a node has a quorum
slice of trusted nodes, and only accepts verification from them. The protocol
requirement is that there needs to be a route of overlapping quorum slices
between any two quorum slice, otherwise there could be disjunctive agreements.
This structure can create larger committees than the regular BA protocols and
leads to a permissionless structure. Examples of this are the Stellar [Maz15]
and Ripple [CM18] consensus protocols.

6.1.4 Hybrid Protocols

Hybrid protocols are a combination of the previously mentioned type of proto-
cols, trying to utilize the advantages of them while mitigating their drawbacks.
Such protocols try to inherit from PoW and PoS the permissionlessness and
asynchrony, while from BA protocols the large throughput.

6.1.4.1 Bitcoin-NG

The Bitcoin-NG protocol [EGSvR16] uses two different block types to achieve
more throughput. The first type is keyblocks, which are generated by the
miners. They are made once per time epoch, and the miner of the keyblock
becomes the new leader in the protocol. Once a leader is elected, it starts
creating microblocks without the need of a Proof-of~-Work. These microblocks
contain the candidate transactions the leader deems acceptable until a new key
block is generated. This leads to much shorter transaction confirmation times,
and increases the throughput.

6.1.4.2 ByzCoin

Byzcoin [KJGT16] tries to improve on the previous idea of Bitcoin-NG. Instead
of choosing a single leader to create the microblocks, it uses a committee of the
most recent keyblock solvers. Thus in general the miners get voting power in
return for their mined blocks. The decision on which transactions to include is
decided by a BA protocol, but with the technique of collective signing [STV " 16],
instead of a round-robin style of communication between every node (like in
PBFT), therefore Byzcoin would not require direct communication between all
the nodes in a committee.

6.2. Preliminaries of Our Protocol 87

6.1.4.3 Elastico

Elastico [LNZ716] is similar to Byzcoin in terms of a PoW deciding who are the
members of a BA committee, but in this case it is used for randomly distribut-
ing all the nodes in the network into smaller subcommittees (sharding). Every
participating node has to solve the PoW, and the individual solutions deter-
mine which separate subcommittee a node is put into. This way the malicious
participants can not force the protocol to put them in the same subcommittee.
The results of the subcommittees are combined by a final committee. With
Elastico the confirmation time is similar to Bitcoin, but the throughput of the
protocol is much higher as the sharding property leads to a scalable algorithm,
where the number of nodes is proportional to the throughput of transactions.

6.1.4.4 Proof-of-Activity

Proof-of-Activity [BLMR14] is a combination of a PoW and a PoS protocol.
It uses a PoW solution of an empty block header as the seed for the next
stakeholder election. Then based on this seed N stakeholders are chosen to sign
the empty blockheader, and the last signer fills the block with transactions, and
broadcasts it as the newest block.

6.1.4.5 Algorand

Algorand [GHM™17] expands on the idea of Byzcoin, where based on some
function a committee is chosen that confirms transactions using a BA protocol.
Instead of a PoW puzzle, it uses a PoS approach with verifiable random func-
tions (VRFs) [MRV99] to choose the members of the next committee, where
the likelihood of being elected is based on the amount of stake controlled.

6.1.4.6 RepuCoin

RepuCoin [YKDV19] is an attempt to improve upon the ByzCoin protocol,
where the protocol not only utilizes the raw mining power of the miners to
determine the next committee, instead it uses the reputations of the miners
as well, where long-term honest miners get preferred over other powerful but
much newer miners, which can result in honest operation in a network where
the attacker has more than 50% of the mining power.

6.2 Preliminaries of Our Protocol

6.2.1 Generic

We work in the following model. The network is composed of N public nodes,
which maintain a consistent state by applying transactions in the same order.
Transactions are supplied to the network by clients in a pre-specified format,
but we do not make any assumptions on their size or structure, nor on the
number of clients and their connectivity.

88 Chapter 6. ReCon

Each node is an equal participant in a consensus protocol, which specifies
the action sequence so that eventually the nodes agree on the transaction order
(safety) and every valid transaction is accepted at some point (liveness). A
protocol is called Byzantine fault tolerant (BFT) if it provides safety and liveness
despite some malicious nodes violating the protocol secretly or openly. The
number of malicious nodes tolerated by a BF'T protocol can not exceed L%J
(one of our goals is to go beyond this bound). Protocols can involve random
coin tosses or be deterministic.

Byzantine Agreement protocols typically operate in rounds. If the number
of malicious nodes exceeds L%J, there may be no agreement (the round is
wasted), or with equivocation the malicious nodes can create two valid blocks,
which is the equivalent of a fork in a blockchain protocol. Dealing with these
types of forks is discussed later in the chapter (Section 6.3.8). If the mali-

2N

cious nodes constitute more than | =~ |, they can force an incorrect agreement

— forgery (which usually leads to a malicious takeover).

6.2.2 Assumptions

We assume smartly malicious nodes, which act so that in the case of round
failure an external observer can not detect who disrupted the protocol. Mali-
cious nodes can communicate with each other to detect if they constitute the
necessary L%J + 1 nodes to disrupt the round, force an equivocation or the
2/3 fraction for an incorrect agreement.

The network is considered to be asynchronous. As a non-probabilistic pro-
tocol can not provide safety and liveness at the same time in an asynchronous
network, these properties of ReCon are dependent on the permissioned con-
sensus protocol used. However the validators are selected via reputation-based
rules from a much larger permissionless set of nodes.

The BFT protocol requires the nodes to sign each message in order to provide
the required integrity and authentication. Even though early BFT designs used
MAC s, they can use fast signatures such as Ed25519 or similar. Given that the
transactions are signed in batches, the performance overhead due to signatures
is negligible. There has been previous work on how to create more efficient
BFT consensus using digital signatures in Byzcoin [[KJGT16] and this approach
is applicable to our case as well (but without using the PoW to select the
validators). As in Byzcoin, this would allow ReCon to have at least an order
(and possibly two orders) of magnitude improvement in transaction throughput
compared to Bitcoin.

We study both scenarios where malicious nodes are determined before the
protocol run and thus no honest node can become malicious, as well as a
dynamic case in which nodes can become malicious or can become honest
(cleaned), new nodes entering the system at certain rate, etc.. We also study
the botnet takeover scenario, in which many nodes can become malicious (at
random, including some high reputation nodes), or Sybil attack scenario where
many malicious nodes but with zero or low reputation are injected at a fast
rate.

6.3. Reputation module 89

The motivation for these assumptions is based on real life observations in
open peer-to-peer blockchain based consensus protocols, as openness allows any
level of malicious behaviour, thus the assumptions have to be as hard as possible.
Our synchrony assumption is the hardest and thus the protocol is secure against
network-based attacks in any circumstances which also covers any observed
attacks in blockchain networks as well. The same logic led to our assumption of
malicious nodes, where the attacker’s goal is to thwart or take over the network,
but it wants to achieve that in the least detectable way. Furthermore with our
assumptions, an external observer can not distinguish honest and malicious
nodes in a committee after a halted consensus.

6.2.3 Nodes

Node-to-node connection is authenticated with public keys. The corresponding
PKI system is maintained by the chain with transactions in the network. In
order to register a new node, revoke or refresh a key the user has to send a
transaction with all the necessary data included. Such blockchain based PKI
systems were shown in [Bonl6, ABB"15]. Nodes participating in successful
rounds of the protocol are rewarded by increase in their reputation score and
potentially by cryptocurrency minted. Such cryptocurrency rewards as well as
reputation score (which might have value outside of the protocol) motivate the
economically rational behavior. Our protocol is permissionless, apart from the
initial commitment of registering the public keys by the nodes. Generic node-
to-node communication of distributing the new candidate transactions and the
new blocks is done via the gossip protocol.

6.3 Reputation module

In this section we describe the reputation module ReCon, which can be plugged
into any Byzantine Agreement protocol with the following rules:

e The protocol consists of (arbitrarily many) rounds.
e At each round N nodes decide the fate of one or many transactions.

e At each round the nodes may reach a consensus or not, and both outcomes
are visible to all nodes.

e Each round a decision is made by a public committee C' of m nodes,
which does not necessarily include all the nodes. The committee decision
is unforgeable’.

e All the committee messages are signed by the transmitting node.

e At the end of each round the results are published as the new block of the
chain.

2The implementation of the secure committee broadcast is protocol-dependent [Bucl6,
KJGT16].

90 Chapter 6. ReCon

The protocol parameters can be found in Table 6.1. The default values in the
table are not fixed, their purpose is to provide a general view on the protocol.
We explore the different choices for most of the values in our simulations in
Section 6.4. Furthermore Figure 6.1 is an example of a single round in our
protocol. An exponential committee selection function chooses the committee
members based on the node ranking per reputation, and if there are more than
2/3 honest nodes (with green), then the round will succeed, and every committee
member’s reputation increases, otherwise if the honest nodes are less than 2/3,
then the protocol halts and the members’ reputation is penalized.

’ Parameter \ Notation \ Default value ‘
Total nodes N 5,000
Committee size m 100
External Discrete Uniform
reputation F Normal
distribution Exponential
Ongoing reputation R —
Default malicious rate Qg 0.4
Minimum malicious rate o 0.05
Committee Exponential
. D .
selection rule Triangular
Security parameter® A 30

TABLE 6.1: The protocol parameters

6.3.1 External Reputation

ReCon instructs the protocol how to select the committee and maintains the
reputation ranking R : N — [0,1], where N is the set of nodes, so that
the nodes with high reputation have low posterior probability of being mali-
cious. The prior probability of being malicious is given to the module and
is called external reputation. If there is no external source of reputation, or,
equivalently, all nodes have equal probability aqy to be malicious, then we set:
R(n)=0 VYneWwN.

If the probability of being malicious varies from «q (default) to a; (minimum
possible), then we normalize as

P(n) —ay
ap — (X1 ’

R(n)=1-—
where P(n) is the probability that node n is malicious. Equivalently,

P(n) = (g — aq)(1 — R(n)) + ;.

We denote the initial distribution of R() by F, and consider various dis-
tribution functions (since R() and P() are affine equivalent, their distribution

3If p is probability of forgery in one round (i.e. malicious 2/3 majority), then A = —log p.

6.3. Reputation module 91

08 X Honest Committee Members
0.7 X Malicious Committee Members
0.6

0.5

Reputation
o o o
N w B

o
=

0.04 1000 2000 3000 4000 5000

Nodes ordered by reputation

FIGURE 6.1: The reputation curve after 10,000 rounds, and the exact chosen com-

mittee members in that round with the 'X’ markers (with green the honest and

with red the malicious ones) using the exponential selection function. In this case

76 of the members are honest, which means the committee will reach consensus
and the committee members’ reputation will increase.

functions are similar). For instance, when R() follows the (0.5,0.15)-normal
distribution constrained to [0, 1], there are 23% malicious nodes in the top 10%
nodes by reputation. The value €2 stands for the overall fraction of malicious
nodes in /. ReCon outputs a new reputation ranking R, for which we experi-
mentally estimate the posterior maliciousness probability.

6.3.2 Committee selection

The decision in a round is made by a committee, which runs a round of a BF'T
protocol on the current set of transactions, and decides to either apply each
of them or not. If the committee comes to a consensus, the transactions are
applied to the state. The committee is selected based on the current reputation
R the nodes inherited or earned during the previous rounds. C|r| denotes the
committee of the r-th round.

The selection of the committee is based on some distribution D, where the
higher reputation value R(n) would result in a higher chance of selection (e.g.
exponential distribution, exponential power distribution, triangular distribu-
tion). Here P is the probability of being selected into a committee.

Vn,l € N : R(n) > R(l) = P(n|D) > P(l|D)

This selection algorithm (Figure 6.1) is implemented in the following way.
First, we sort the nodes based on their reputation in a descending order. Then,
based on D, m random numbers are generated in [0, N), and then taking the
floor of all of them, we receive the selected nodes. In order to avoid double

92 Chapter 6. ReCon

selection we select the closest yet unselected node with a higher reputation. If
such node does not exist, then we do the same going towards the lower reputed
nodes.

We consider two different selection distributions: exponential and triangu-
lar. Exponential gives priority to the highly reputed nodes and can strongly
suppress the lower ranked ones, depending on its variance. The triangular dis-
tribution is the more fair one for the new low reputation nodes — it gives priority
proportionally to the reputation but at a cost of slower convergence and lower
cost for a Sybil attack.

Though the actual distributions prioritize the higher reputed nodes, they
will still allow low reputed nodes to be selected into the committees. In the
exponential case, & = —log(0.05)/N. The distribution itself is truncated to the
[0, N) interval. This £ value means that fON exp.dist.(€) = 0.95, or in other
words 95% is the chance of randomly getting an integer that is in the interval
[0,N).

In a similar fashion, the triangular distribution is actually a distribution from
0to N+ %, truncated to the [0, V) interval, to give a chance to be included in
a committee even to nodes that have a low reputation value.

6.3.3 Rewards and penalties

The reputation module observes whether the committee has reached consensus.
In the “smart malicious” model we imply that these two outcomes are the result
of the following configurations:

e The committee has reached consensus if there are fewer than m/3 (no
influence) or more than 2m/3 (total control) malicious nodes in the com-
mittee.

e The committee has not reached consensus if the number of malicious nodes
is between m/3 (non-inclusive) and 2m/3 (inclusive).

Thus in our simulation we model the protocol execution as follows:

e If C[r] has fewer than m/3 malicious nodes, then the round is declared
success and every node in C[r| gets their reputation increased.

e If C[r] has m/3 or more malicious nodes, but less than 2m/3 malicious
nodes, then the round is declared failure and every node in C[r] gets their
reputation decreased. This event is undesirable (round time is wasted)
but not catastrophic.

e If C[r] has 2m/3 or more malicious nodes, then the round is declared
forgery. Since we can not detect externally if the decision is malicious or
not, every node in C[r] gets their reputation increased. However in most
cases this would mean a hostile takeover and such event should be avoided
by the proper parameter choice in the protocol.

The exact rewards and penalties are calculated in the following way per
node. In case of a reward, the reward function for node n is

6.3. Reputation module 93

R,(n) = R(n) y ,d > 1. (6.1)
The penalty function is
-R
Ry(n) = R(m) - 200 451, (6.2

where s is the proportion of success rounds in the last 100 rounds (if 56
were successful, then s = 0.56). The idea behind this adaptive parameter is
the following. Our goal is to sort the participating nodes based on their likeli-
hood of maliciousness. Thus we choose values, that will increase and decrease
the reputation values by the same amount on average, but the nodes will be
reordered based on their behaviour.

The divisor d is for optimization, as for different selection functions a dif-
ferent d will result in the best behaviour in our protocol. For example, in the
case of exponential selection d = 10, but for triangular selection d = 35. These
values are the results from our empirical testing of the protocol, where we sim-
ulated the behaviour of the nodes (Section 6.4). Below we explain our choice of
these reward and penalty functions.

(1 —5)(1—R(n)) o5 R(n)
d = d
1—(s+R(n)s0
s+ R(n) > 1 = penalty > reward
s+ R(n) < 1 = penalty < reward

In the case of s+ R(n) > 1, notice that it is only true, if none of the values
are 0, which means that there are definitely several consensus successes. Also
notice, that if s = 0, then the value of penalty is 0, and if s = 1, then similarly
the value of reward is 0.

These kind of changes in the values also provide us the feature, that if a node
has a high reputation and participates in a bad round, it will be penalized more
than a lower reputed node in the same failed round. It is true in the opposite
direction as well, as the reward is higher for lower reputed nodes in successful
rounds.

6.3.4 Probability of a forgery

We have to consider what is the probability of having a forgery (P(k > L%”J),
where m is the committee size and k is the number of malicious nodes in a
committee). We model this as a Bernoulli trial where each member of the
committee independently has probability p to be a malicious node. With this
model the binomial distribution B(m, p) describes the committee selection. We
also introduce a security parameter A which describes the upper bound on the

probability of forgery as 27* (Tables 6.2). Then:

94 Chapter 6. ReCon

(o)

2—)\ 2—30 2—60 2—120
p |0.364 |0.248 | 0.124

> (T)a-prer e

=0

TABLE 6.2: For m = 100, the A security parameters and the corresponding p
values, where p is the probability of selecting a bad node.

Furthermore, we can observe these p parameter values from the protocol
attributes as well. In Table 6.3 we show the relative success rate (s, introduced
in Section 6.3.3) of the protocol calculated from the p parameter values found
in Table 6.2. This also means that if the protocol achieves a higher success rate
then 24.5% it is safe with A = 30.

27)\ 2-30 2—60 9—120
Successful rounds (s) | 24.5% | 97.5% | 99.99999%

TABLE 6.3: For m = 100, the X\ security parameters and the corresponding per-

centage of successful rounds based on the p values from Table 6.2. It shows that

for A = 30 security parameter even if only 25% of the rounds reach consensus, the
protocol is still safe.

If we increase the committee size m, the value of p increases as well, where
lim p =

m—0o0
This only shows the values for cases of uniform choice, but in our protocol

we use a ranking based on reputation and a weighted selection (Figure 6.1).
In the following we show how to calculate the p parameter from an external
reputation system and the selection algorithm using the law of total probability
for a fixed N sized set. Let X be the event of selecting a bad node and Y,, the
event of selecting the n-th node (the n-th based on the reputation ranking, see
Section 6.3.2). Then:

N N
p=P(X)=> P(XNY,) =) P(X[V,)P(Y,) where
n=1 n=1

P(X|Y,) := P(Z,) then
P(Z,) = P(n-th node is malicious)

p=Y_P(Z,)-P(Y,)

n=1

For the value of P(Z,) in case of an external reputation see Section 6.3.1,
otherwise for an observed state:

P(Z,) = 1 if n-th node is malicious
") 0 if n-th node is honest

6.3. Reputation module 95

6.3.5 Types of Blocks

The protocol allows 2 types of blocks to be added to the chain. The first type is
the regular block which contains the transactions agreed upon by the committee.
However we want our protocols to work beyond the 1/3 maliciousness limit of
BFT protocols. To avoid protocol stalls over this threshold we introduce a
mechanism to detect stalls but which does not introduce strict synchrony. We
use a second type of block that acts as a timing epoch. To produce this block,
we use Verifiable Delay Functions (VDFs, [BBBF18, Wes19, Pie19]).

VDFs are a new type of cryptographic puzzles. Compared to PoW puzzles,
which require random guessing of input values and can succeed at any try,
VDFs provide a time-lock puzzle, which means that the input x of the function
is fixed and the prover can not solve the puzzle in less then T steps. In essence,
VDF's require an honest prover to provide a proof of sequential work of T" steps
on a fixed input, while an adversary prover can not parallelize the proving
process. VDFs also require fast practical verification of the proofs, which is the
key attribute of the protocol, as while the proof generation takes a long time,
the verification of the proof is much faster. Finally, VDFs have to be unique,
meaning that for all input x it is difficult to find a y, that the verification accepts
x as input and y valid output, but the evaluation of x in the puzzle would not
result in y.

In ReCon VDFs are used in the following way. The T value is set to be a large
enough constant (e.g. a few minutes), that would give more than enough time
for an honest committee to reach consensus. Then as soon as the committee is
selected based on the previous block, any member® of the entire network can
start computing the VDF based on the last block. If a consensus is reached in
time it will be distributed in the network and a new committee will be created
for the next block. On the other hand, if a node creates a block with a correct
VDF before it sees a new block with a correct consensus, it can gossip it in the
network as the next block as a proof that the committee did not reach consensus
in time.

In order to keep the protocol fair, we have to choose the time T' very care-
fully based on comprehensive testing on what is the expected time for an honest
committee to reach consensus and to avoid consequences of secret VDF com-
putation optimization by the attacker which may allow him to penalize honest
committees®. With this technique, there is no direct known A time that is given
to the committee to reach consensus, but instead an unknown A time until the
first block with a valid VDF appears, acting as a timing epoch. This way we
do not require strong synchrony, as the A is unknown, which is in line with
protocols working in asynchronous networks like PBFT.

40r alternatively a smaller set of high reputation nodes, not participating in the current
committee - for extra Sybil protection.

5Optimization free implementation of VDF is a non-trivial problem in itself. However if
the protocol gains traction we expect that there will be public optimized hardware to compute
VDFs.

96 Chapter 6. ReCon

0.0004 i
0.0006 [

0.0005 0.0003

0.0004 |-

0.0003 0.0002 r

0.0002 |- L
0.0001 -

0.0001

I
500 1000 1500 2000 2500

FIGURE 6.2: The filled area is the fair- FIGURE 6.3: The exponential power
ness of the exponential selection distribution, or sometimes also called
the generalized normal distribution

with the parameters (5;0;1,000)

6.3.6 Source of randomness

In our protocol we use a deterministic PRNG as randomness for the selection
of the committee. The drawback of this approach is that successful committees
might be able to manipulate the randomness with the list of chosen transac-
tions (so called grinding). VDF's do provide unpredictable results, which makes
them even more useful for our protocol as a re-randomization seed, but if every
committee is successful there is no VDF computation. In order to still have a
regular influx of hard to predict randomness we suggest that VDF computation
is also performed at regular intervals (e.g. every 50 blocks).

6.3.7 Fairness

We define the fairness F' of a selection function to be the L; distance between
the uniform distribution over N nodes and the selection distribution over the
same interval, namely:

F= / 7(a) — lde (6.3)

Where f(x) is the probability density function of the selection distribution.
The idea behind the definition is to describe how close the selection distribution
is to the uniform distribution, which would be considered as perfectly fair. It
is the most fair, because as an observer of the protocol we do not know which
nodes are malicious, thus we should give the same probability to every node
to be chosen for a committee. This way our selection functions would produce
the following fairness values when N = 5,000: Fyignguiar = 0.357; Fezponential =
0.671.

This is also the reason why both of our selection functions (triangular and
exponential) are selected in such a way, that even the node with the lowest
reputation will have a chance of being selected, instead of completely ignoring
the last few nodes. If we were to design our selection function with the last nodes
only having close to zero chance of being selected, then the fairness values would
be much worse: Firignguiar = 0.9; Fegponentiar = 0.918.

6.3. Reputation module 97

One could consider other distributions as a selection function, e.g. a se-
lection that would act as a filter, which selects almost only from the highest
reputed nodes. An example for that can be the exponential power distribution
(Figure 6.3). This selection function, however, would be very unfair, as the
fairness value would be Fiyponentiaipower = 1.35 and the bottom nodes have no
chance to be selected for the committee.

Implicitly we consider a fairness value of above 1 as unfair based on our
empirical data. However such a selection function might be useful during botnet
takeover or Sybil attack events.

6.3.8 Dealing with forks

As we noted earlier, if the adversary has control over 1/3 of the committee,
different scenarios can happen. Even though each BFT protocol may have its
own method to resolve these situations, we list some solutions here.

The first option for the adversary is halting the protocol by not participating
in the Byzantine Agreement, and thus there will be no new blocks created in
that round, as L%J + 1 signatures are required for a block to be accepted. In
this case a valid VDF timeout block will be created. This might lead to forks
as well, if a consensus succeeds, but another member of the network created
a VDF block meanwhile. In this case we let the network handle the fork and
simply use the longest chain rule for choosing the valid chain.

The second one is equivocation. The adversary splits the honest nodes into
two subgroups, such that he has 2/3 majority with either of them combined
with himself. Then he communicates different transactions to these groups,
thus creating two valid blocks in the same round. Both blocks contain only valid
transactions, as they need signatures from honest nodes, and honest nodes will
only approve valid transactions. However, as all protocol messages are signed,
an evidence of signing both blocks can be presented in the next committee
rounds and the malicious nodes will have their reputation score reset to 0.

Notice the difference between the fork by VDF blocks and a fork by equiv-
ocation. In case of equivocation the committee creates two separate valid con-
sensuses with overlapping verifiers, while with a VDF only one of the blocks is
a valid consensus at the same chain height. This approach makes the proto-
col probabilistic, as there is a possibility for forks but keeps it asynchronous.
It is well known that a protocol can not be deterministic in an asynchronous
setting, either the safety or liveness would break. Considering this, forks in
the blockchain temporarily break the safety of the protocol, but they keep the
liveness property in all circumstances while the protocol converges to a single
chain and restores the safety. This is the opposite compromise to classic BF'T
protocols like PBFT.

6.3.9 Convergence

We say that the BFT protocol S-converges after | rounds if the success rate
(fraction of successful rounds) never goes below § after [rounds.

98 Chapter 6. ReCon

Concrete convergence parameters depend on the application. The values
ap, a (from Table 6.1) determine what success rate s can be guaranteed by the
ReCon ranking, and the value [determines the length of the bootstrap phase
needed to rank the nodes.

6.3.10 Pseudocode

The protocol description as a pseudocode (Algorithm 5), where N is the num-
ber of nodes in the network, m is the committee size and R is the array of
reputation values. C]r| is the selected committee in round r generated by the
gen_committee function. The new gossiped block block, contains the exact re-
ward and penalty values based on the result of the consensus or VDF block. To
keep the description simpler we don’t specify which nodes compute the VDF|
but this can be easily determined based on the previous block. An important
consideration is whether we allow any node to compute the VDF, or limit it to
a small set of high reputation nodes (who are not in the current committee).
The latter would provide additional Sybil resistance.

6.4 Simulation Results

We ran our simulations® for 10,000 rounds” with default values of total nodes®
N = {5,000, 10,000, 20,000, 30,000}, committee size m = 100 and various
combinations of external reputation and selection rule. Every combination is
tested 100 times and the results are averaged.

We note that if there is an external reputation, we set a; to 0.05. We also
introduce a new variable, namely €2, which is the overall malicious rate of the
nodes (so that in N nodes there are Q- N malicious ones).

We study three cases for the external reputation: (a) no external reputation,
equivalent to the uniform zero reputation; (b) normally distributed reputation
and (c) exponentially distributed reputation. Normal distribution of reputation
is natural in scenarios where ranking or reputation is determined by many
independent factors. We chose one with parameters N(0.5,0.15) so that its
restriction to the [0, 1] interval covers more than 99% of events (the 3o rule).

We take exponential distribution with & = 0.3, since according to [LLHO3]
the reputation distribution in an online consumer-to-consumer network as well
as in most social networks is exponential.

6The simulator is available with a user friendly interface at https://github.com/
cryptolu/ReCon.

"Note that if we take a conservative estimate of 60 seconds per round, 10,000 rounds
would take 166 hours. Thus a bootstrap phase of a few thousand rounds is reasonable for the
convergence of reputations.

8 At the time of writing the maximum number of nodes in the Bitcoin network was around
10,000, while in Ethereum around 30,000.

https://github.com/cryptolu/ReCon
https://github.com/cryptolu/ReCon

6.4. Simulation Results 99

Algorithm 5 ReCon Reputation module

procedure Round(r, block,_1) > The main round function
C[r] := gen_committee(N, m, R, block,_1) > Apply reput. selection rule
If r is divisible by [, only create a VDF block, no committee selected
if distr_cons(C|r],block,) then > Whether the consensus is successful
gossip(block,) > Contains all information from a successful consensus
Round(r + 1, block,)

else
gossip(block,) > Contains all information from a failed consensus
Round(r + 1, block,)

end if

end procedure

procedure distr_cons(C|r], new_block) > Returns new block and a flag

if myNode in C|r] then start_consensus_alg(C[r], myNode)

end if

while !new_block do wait() > Wait till new block is returned

end while

if fork(r) then > A fork has happened in some round k < r
Let mal_nodes be the nodes that signed both chains
reset(mal_nodes) > Set their reputation to 0, or even delete them

end if

if new_block.type = CONSENSUS then > Consensus was reached
reward(C|r])
return TRUE

else if new_block.type = VDF then > VDF was faster than consensus
penalise(Cr])
return FALSE

end if

end procedure

6.4.1 External reputation: discrete (no information)

In this case every node has equal chance oy of being malicious, and the initial
reputation is zero for all nodes. We consider two different selection rules and ev-
ery 100 rounds we increase or decrease the variance of the selection distribution
by a certain value.

First, we consider the exponential selection rule. We start with a variance
of 1/N = ¢72, and then increase it every 100 rounds by 1 —g5; starting with
i = 1. We do this until we reach a variance, for which P(X < N) > 0.9, where
X is the random exponential variable with & = m. This means that the
exponential distribution is mostly restricted to the [0; V) interval. Thus at the
start of the protocol every node has a similar chance to gain reputation, and
later more trusted nodes have more significance.

Our results (Table 6.4) show that the protocol converges to a correct be-
haviour even if 45% of the nodes are malicious. However, the success rate
decreases as the initial malicious rate €2 grows.

100 Chapter 6. ReCon

Then we consider the triangular distribution for its more fair selection pro-
cess, as even the node with the lowest reputation score should have a real chance
of participating in a committee (results in Table 6.5). In this case, we start with
a length of 10 times IV, truncate it to IV, and reduce this length by N every 100
rounds. After a 1,000 rounds, we settle with the aforementioned (Section 6.3.2)
length of N + % truncated to V.

Q Success Rate Q Success Rate
N = 5,000 ‘ N =10,000 | N = 20,000 ‘ N = 30,000 N =5,000 | N =10,000 | N = 20,000 | N = 30,000
0.1 100% 100% 100% 100% 0.1 100% 100% 100% 100%
0.2 99.95% 99.8% 99.8% 99.8% 0.2 99.92% 99.9% 99.9% 99.9%
0.25 99.7% 99.5% 99.7% 98.7% 0.25 98.8% 98.1% 98% 96.7%
0.33 99.6% 99.5% 98.6% 98.2% 0.33 96.3% 95.9% 92% 87%
0.4 98.7% 98.2% 96.5% 95.3% 0.4 89.1% 85.8% 8% 60.1%
0.45 96.5% 94.2% 89.9% 76.9% 0.45 60% 50.3% 23.2% 9.9%

TABLE 6.4: No external reputation, ex- TABLE 6.5: No external reputation, tri-
ponential selection rule: success rates angular selection rule: success rates af-
after 10,000 rounds. ter 10,000 rounds.

The difference in success rates can be explained with our introduced F'
fairness value. The triangular distribution has a better fairness value, which
means it will choose lower reputed nodes more often, and such it can sort them
better as well. On the other hand, the same can be said about the exponential
distribution, as it has a worse fairness value, and it will choose higher reputed
nodes more often, but because of that it will not be able to sort out the nodes

that well.

6.4.2 External reputation with normal distribution

We repeat our previous tests with external reputation distributed normally and
the maliciousness probability varying from g to ay = 0.05. First we consider
the selection rule based on exponential distribution (see Table 6.6).

a0 Q Success Rate o Q Success Rate
N =5,000 | N =10,000 [N = 20,000 [N = 30,000 ’ N =5,000 | N =10,000 [N = 20,000 | N = 30,000

041]0225] 99.99% 99.9% 99.9% 99.9% 0410225 99.98% 99.9% 99.9% 99.9%
0.6]0.325] 99.8% 99.7% 99.6% 99.6% 06]0325] 98.1% 97.5% 97% 94.7%
0.7]0.375] 99.5% 99.3% 98.8% 98.8% 0710375 9% 96.7% 93.5% 86.7%
0.8]0.425| 98.8% 98.8% 98% 95.7% 08]0425| 91% 39.8% 79% 65.2%
09]0475| 93% 90% 84.8% 7% 09]0475| 50% 39.7% 9.2% 9.0%
10525 50% 47.9% 41.4% 40.7% 1 los2s] 1% 1% 0.8%" 0.7%"

TABLE 6.6: External normally dis- TABLE 6.7: Simulation results in the

tributed reputation, exponential selec- case of external normal distribution,
tion rule: success rates after 10,000 selection with triangular distribution.
rounds. The last simulation has an asterisk, as

it produced a forgery in one of the runs.

The results in Table 6.6 show, that even in heavily adversarial settings of
) = 0.475 the protocol 0.93-converges, while for {2 = 0.525 it 0.5-converges.
The difference based on the selection distributions between Tables 6.6,6.7 can
be explained with the same reasoning as in the previous case. We can achieve

6.5. Attacks and their mitigation 101

better success rates compared to Tables 6.4,6.5 because of the pre-sorting of the
nodes based on the external reputation. This is natural and demonstrates that
trusted external reputation enhances the Sybil resistance of the protocol.

6.4.3 External reputation with exponential distribution

In the case of an external exponential reputation system, the number of rounds
for convergence values is bigger for the same «y, but the overall malicious rate
is much higher. For ay = 0.6 we have 2 = 0.45, and in the case of oy = 0.7 it
is 0.53. Also notice that we do not achieve our required success rate, but the
0.7 and 0.75 cases still converged to a lower value, and they never produced a
forgery in our simulations. First we show the results for the selection based on
exponential distribution (Table 6.8).

a0 Q Success Rate a0 Q Success Rate

N =5,000 | N =10,000 | N = 20,000 | N = 30,000 N =5,000 | N =10,000 | N = 20,000 | N = 30,000
0.4 0307 | 99.6% 99.5% 99.4% 98.9% 0.4 | 0.307 97% 96.9% 93.6% 93.3%
0.5 10381 99.1% 99.0% 98.9% 96.6% 0.5 0.381 93% 92.8% 82.2% 74.6%
0.6 | 0.456 9% 96.8% 93.4% 87.1% 0.6 | 0.456 67% 62.7% 31.1% 18.4%
0.7 [0.529 | 51.2% 51.1% 50.7% 47.7% 0.7 | 0.529 1%* 1%* 0.1%* 0.1%*
0.75 | 0.565 | 28.5% 25.7% 18.7% 8.4%
0.8 |0.605 | 5% 3.6%" 0.1%" 0.1% TABLE 6.9: Simulation results in the

case of external exponential distribu-

tion, selection with triangular distribu-

tion. The last simulation has an aster-

isk, as it produced a forgery in one of
the runs

TABLE 6.8: External exponentially dis-

tributed reputation, exponential selec-

tion rule. The last simulation has an

asterisk, as it produced a forgery in one
of the runs

In triangular selection case we have similar results as with the external
normal reputation system.

6.5 Attacks and their mitigation

We will now consider attacks, based on examples from real world financial
blockchains, such as Bitcoin and Ethereum. We will also propose good defences.

6.5.1 Botnet takeover

Our first example is a botnet takeover, where an attacker takes over the control
of a large subset of nodes, and tries to either block the protocol (Denial of Service
- DoS), or even create a forgery. The success of the attack largely depends on
the number of nodes taken over, but the results can be vastly different based
on the reputation value of those nodes.

6.5.1.1 Mitigation

We have simulated these attacks, and in the case of a large takeover of 1,000
random nodes, where N = 5,000, the success rate s of the protocol dropped
heavily at first from above 95% to a minimum of 40%, but it recovered in a

102 Chapter 6. ReCon

few hundred rounds, and got close to its previous success rate. As discussed in
Section 6.3.4, even a success rate of 25% achieves A = 30 security, as we can
revert the success rate into a binomial distribution. If a large enough subset is
taken over, that can cause a forgery, but that would mean the overall number of
malicious nodes would be probably above 50%. Note also that botnet takeover
would be noticeable by the rapid drop in the success rate of the protocol - which
any node can efficiently and locally measure and which can be used to trigger
a temporary switch to less fair but more robust selection rules.

6.5.2 Sybil attack: saturation

In this version of the well-known Sybil attack, a large number of new malicious
nodes (more then N/5) join the protocol, and try to subvert the performance,
or even create a forgery. However such nodes would have zero initial reputation.

6.5.2.1 Mitigation

The protocol may require a new node to participate only in communications
without any eligibility for selection into a committee for a set amount of time
(e.g. 2 weeks). Then every new node would start from reputation value 0. For
an attacker to gain a large enough probability of one of its nodes being selected
into a committee would require either buying and running many dedicated
servers, or controlling a botnet for weeks.

It is also easy to detect if many nodes are joining the network at the same
time and could be also a trigger for a switch to more conservative selection
rules.

6.5.3 Sybil attack: lie and wait strategy

A more dangerous version of a Sybil attack would be if the malicious nodes only
act badly, if they have 2/3 majority in a committee. At this point they just
take over the network.

6.5.3.1 Mitigation

Due to random selection even nodes with high reputation might have to wait
for long before getting a chance to create a forgery. Thus the adversary has
to control a high number of nodes and have to keep up them active until that
round. This would be costly and we choose the security parameter A so that
probability of this attack is negligible (ex. below 273% in any given round).

6.5.4 Attacks on randomness

Another attack would be simply DoS-ing the committee members, as their par-
ticipation is publicly known to all the nodes in the protocol. If an attacker is
a node, and learns the members of the next committee quickly enough, he can
DoS a portion of them, which would stall the protocol.

6.6. Summary and Conclusions 103

6.5.4.1 Mitigation

A defense against a DoS attack could be generating multiple committees (in
the limit every node being in some committee), making it harder and more
expensive for the attacker to DoS more than 1/3 of the nodes in all of them.
As for which committee will produce the actual block it could be decided by an
external unpredictable beacon (possibly based on VDF). Note that DoS attack
would be very noticeable by the sharp decrease of the success rate s of the
protocol, and thus this mitigation can be switched on only when it is really
needed.

6.5.5 Honest majority

Another problem could be the fact, that we require only an honest majority in
the committees, and there is no rational reason for acting honestly.

6.5.5.1 Mitigation

This can be mitigated in two different ways. Firstly, there are real world exam-
ples (e.g. Bitcoin or Tor), where there is no direct reward for running a full node
(or Tor relay), only the indirect reward, that the user can personally monitor
the validity of transactions. Even this way there are more than 10,000 Bitcoin
full nodes currently in the network (and over 7,000 Tor relays).

Secondly, we can introduce a small reward for participating in a correct com-
mittee (for example, by minting some of the cryptocurrency in the BFT process
or by distributing transaction fees), which would introduce some economic ra-
tionale for acting honestly. The problem with that is, that it would decrease
the cost of a Sybil lie and wait strategy (Section 6.5.3), as running nodes would
not be that expensive, or would even partly pay for themselves. Because of that
these rewards would have to stay either relatively small so that running even a
highly reputed node would not pay for itself or the opposite, so that attacking
the network would be against the economic interest of the adversary (similar to
the current situation with mining in Bitcoin).

6.5.6 Detection based on the success rate

A lot of attacks are detectable by simply monitoring the success rate s (Section
6.3.3). If there is a significant drop (e.g. 10% at least) in the number of
successful rounds, the protocol can automatically employ a stricter selection
rule (e.g. exponential power rule), which would quickly penalize bad nodes at
the cost of being temporarily unfair to some of the honest nodes. The protocol
can switch back to a more democratic triangular selection rule when the success
rate improves.

6.6 Summary and Conclusions

In this chapter we have described a novel approach for more scalable permis-
sionless blockchain consensus protocols that are resilient against Sybil-attacks.

104 Chapter 6. ReCon

Our protocol ReCon utilizes external reputation ranking to select a small subset
of validators from a large set of nodes for a fast permissioned BF'T protocol.
This in turn would help to improve transaction throughput by one or two orders
of magnitude compared to Bitcoin’s Nakamoto consensus. Our solution allows
Bitcoin-style egalitarian peer-to-peer networks of thousands of validator nodes
without the energy waste of a Proof-of-Work based blockchain. Our protocol
also tolerates a larger threshold of malicious nodes than a BFT consensus -
1/2 instead of 1/3, although that also depends on the exact distribution of the
malicious nodes.

105

Chapter 7

Summary and Conclusions

In this thesis we have expanded the existing academic knowledge regarding the
novel blockchain research area, providing useful general analysis and attacks
against user privacy in the privacy preserving cryptocurrency Zcash. These
attacks can also be used as a guidance for the general users as to what kind
of behaviour they should avoid. These studies also show that in general any
protocol that mixes public and private services where there is direct communi-
cation between the two parts can leak privacy sensitive information and these
services can not be used just as a black box to provide the desired privacy. Fur-
thermore we have described a new blockchain based permissionless consensus
protocol utilizing reputation rankings. Let us summarize our finding and user
suggestions on a per chapter basis.

In Chapter 2 we have shown two heuristics to link mining related hiding and
revealing transactions in Zcash. We have linked over 88.2% of the mined coins
through the shielded pool of transactions.

This work shows that even if a blockchain is theoretically safe, bad use prac-
tices and an intermix of hidden and public transactions can lead to considerable
information leakage defeating the very strong cryptographic privacy features of
Zcash. Moreover, since hidden transactions formed only 13.4% of the total num-
ber of transactions, 95.5% of all Zcash transactions became potentially linkable,
which is very close to privacy level of the original Bitcoin blockchain. This study
shows that if there is no proper incentive for the mandatory usage of privacy
preserving techniques, the overall effect of these techniques can be negligible.

We also note, that if mining directly to shielded addresses by the mining pool
members became more popular, it would reduce the accuracy of our heuristics,
as the hiding and revealing volumes might not be equal or close to equal any-
more. As of now we have not observed widespread implementation and usage
for payouts directly to shielded addresses.

In Chapter 3 we have shown some privacy issues in the Zcash cryptocurrency,
mainly utilizing the hiding and revealing transactions that convert coins between
the private and public part of the blockchain. We have also shown two novel
active attacks - Danaan-gift attack and Dust attack - against Zcash user privacy,
and we have provided a theoretical model and a statistical analysis for their
success likelihood. We have reinforced the notion that Zcash is not just a black-
box solution, where if a user uses the shielded transactions, it has constant
strong privacy. Instead, we show that even the users of Zcash have to put some
care into how they use the shielded transactions, and how they transfer coins
between the public and private parts of the blockchain.

106 Chapter 7. Summary and Conclusions

We would like to provide some general suggestions for the users of Zcash to
try to avoid linkage using any of these methods. First, if a user has to pay coins
to a shielded address and all of its coins are in public addresses, the user should
either shield the coins in multiple transactions, or shield more coins than it needs
to transfer to avoid issues in case the receiver of the coins would reveal them in
the future. Users should avoid using the default transactions fee. They should
also pay attention to the number of outputs they control in shielded outputs, as
spending all of them together leaves a visible trace on the blockchain. Finally,
it is also safer to hide and shield coins with round values, where at least the
last 4 digits of the value shoud be zero, especially if the economic value of those
digits is negligible.

In Chapter 4, we have presented an overview of decentralized GPU mining
in cryptocurrencies. We have studied the most popular mining hardware, while
also investigating the effect of the introduction of ASICs into the mining ecosys-
tem of Zcash. We have provided methods that could be used to detect hidden
ASIC farms in a network, and verified their effectiveness in practice. We have
also shown how the overall effect of ASICs and reduced exchange rates damage
the decentralization of mining power, leading to a disappearance of over 75%
of the miners in Zcash.

We have shown how using only blockchain information an attacker can learn
the hash rate of a miner and might even deduce the structure of their mining
rigs, reducing their privacy. This study helps to expose privacy vulnerabilities in
the current mining ecosystem which is crucial for privacy-preserving currencies
and privacy-conscious users.

In Chapter 5, we have investigated the behavior of cryptocurrency exchanges
on the Bitcoin blockchain. We found, that in the case of some well-known
exchanges the online reported traffic and the traffic on the blockchain match up
close to each other, which can be used as a clue in verifying the correctness of
the reported exchange traffics. Furthermore, we have provided heuristics that
try to classify large clusters of addresses whether these clusters are controlled
by exchange services. As the work is experimental in nature, we do not claim
any hard truth, but the study can be used as a building block and an interesting
clue for further studies.

Finally in Chapter 6, we have described a novel approach for more scalable
permissionless blockchain consensus protocols that are resilient against Sybil-
attacks. Our protocol ReCon utilizes external reputation ranking to select a
small subset of validators from a large set of nodes for a fast permissioned BF'T
protocol. This in turn would help to improve transaction throughput by one
or two orders of magnitude compared to Bitcoin’s Nakamoto consensus. Our
solution allows Bitcoin-style egalitarian peer-to-peer networks of thousands of
validator nodes without the energy waste of a Proof-of-Work based blockchain.
Our protocol also tolerates a larger threshold of malicious nodes than a BFT
consensus - 1/2 instead of 1/3, although that also depends on the exact distri-
bution of the malicious nodes.

7.1. Future Works 107

7.1 Future Works

We would like to suggest direction for future research based on our findings.
First, monitoring the evolution of the Zcash blockchain and performing studies
on newer data might provide new insights. Expanding of our methodologies to
study other privacy blockchains is also a natural and useful continuation of this
work. Furthermore, either a more sophisticated probabilistic model or a generic
simulator for blockchains is a research area that still has open problems and
questions for future studies.

Regarding the mining landscape with even more data on ASICs in Zcash a
further study could be performed focusing on the evolution of the new mining
hardware, and how the new hardware disrupts the mining profitabilities of the
older ASICs. Study of mining centralization and its effect on the blockchain
ecosystem is of research interest.

Our study on exchange services is experimental in nature and the goal of it is
to provide some foundation and clues for a larger general study on exchanges,
focusing on their effect on Bitcoin as well as a study of interaction between
exchanges and public blockchains in general.

109

Bibliography

[ABB*15]

[ACBMOS]

[ACP+17]

[AKR*13]

[AMQ13]

[Bac02]

Christopher Allen, Arthur Brock, Vitalik Buterin, Jon Callas,
Duke Dorje, Christian Lundkvist, Pavel Kravchenko, Jude Nel-
son, Drummond Reed, Markus Sabadello, Greg Slepak, Noah
Thorp, and Harlan T Wood. Decentralized public key infrastruc-
ture: whitepaper, 2015. https://danubetech.com/download/
dpki.pdf.

Elli Androulaki, Seung Geol Choi, Steven M. Bellovin, and
Tal Malkin. Reputation systems for anonymous networks.
In Privacy Enhancing Technologies, 8th International Sympo-
sium, PETS 2008, Leuven, Belgium, July 23-25, 2008, Pro-
ceedings, volume 5134 of Lecture Notes in Computer Science,
pages 202-218. Springer, 2008. https://doi.org/10.1007/
978-3-540-70630-4_13.

Joél Alwen, Binyi Chen, Krzysztof Pietrzak, Leonid Reyzin, and
Stefano Tessaro. Scrypt is maximally memory-hard. In Advances
in Cryptology - EUROCRYPT 2017 - 36th Annual International
Conference on the Theory and Applications of Cryptographic Tech-
niques, Paris, France, April 30 - May 4, 2017, Proceedings, Part
111, volume 10212 of Lecture Notes in Computer Science, pages 33—
62, 2017. https://doi.org/10.1007/978-3-319-56617-7_2.

Elli Androulaki, Ghassan Karame, Marc Roeschlin, Tobias
Scherer, and Srdjan Capkun. Evaluating user privacy in bitcoin.
In Financial Cryptography and Data Security - 17th International
Conference, FC 2013, Okinawa, Japan, April 1-5, 2013, Revised
Selected Papers, volume 7859 of Lecture Notes in Computer Sci-
ence, pages 34-51. Springer, 2013. https://doi.org/10.1007/
978-3-642-39884-1_4.

Pierre-Louis Aublin, Sonia Ben Mokhtar, and Vivien Quéma.
RBFT: redundant byzantine fault tolerance. In IEEFE 33rd Inter-
national Conference on Distributed Computing Systems, ICDCS
2013, 8-11 July, 2013, Philadelphia, Pennsylvania, USA, pages
297-306. IEEE Computer Society, 2013. https://doi.org/10.
1109/ICDCS.2013.53.

Adam Back. Hashcash - a denial of service counter-
measure. 2002. ftp://sunsite.icm.edu.pl/site/replay.old/
programs/hashcash/hashcash.pdf.

https://danubetech.com/download/dpki.pdf
https://danubetech.com/download/dpki.pdf
https://doi.org/10.1007/978-3-540-70630-4_13
https://doi.org/10.1007/978-3-540-70630-4_13
https://doi.org/10.1007/978-3-319-56617-7_2
https://doi.org/10.1007/978-3-642-39884-1_4
https://doi.org/10.1007/978-3-642-39884-1_4
https://doi.org/10.1109/ICDCS.2013.53
https://doi.org/10.1109/ICDCS.2013.53
ftp://sunsite.icm.edu.pl/site/replay.old/programs/hashcash/hashcash.pdf
ftp://sunsite.icm.edu.pl/site/replay.old/programs/hashcash/hashcash.pdf

110

BIBLIOGRAPHY

[BBBF18]

[BCCT12]

[BCG*14]

[BCS16]

[BF19a]

[BF19b)]

[BF20]

[BEV19]

Dan Boneh, Joseph Bonneau, Benedikt Biinz, and Ben Fisch.
Verifiable delay functions. In Advances in Cryptology -
CRYPTO 2018 - 38th Annual International Cryptology Confer-
ence, Santa Barbara, CA, USA, August 19-23, 2018, Proceed-
ings, Part I, volume 10991 of Lecture Notes in Computer Sci-
ence, pages 757-788. Springer, 2018. https://doi.org/10.1007/
978-3-319-96884-1_25.

Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer.
From extractable collision resistance to succinct non-interactive
arguments of knowledge, and back again. In Innovations in The-
oretical Computer Science 2012, Cambridge, MA, USA, January
8-10, 2012, pages 326-349. ACM, 2012. https://doi.org/10.
1145/2090236.2090263.

Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew
Green, [an Miers, Eran Tromer, and Madars Virza. Zerocash: De-
centralized anonymous payments from bitcoin. In 201 IEEE Sym-
posium on Security and Privacy, SP 2014, Berkeley, CA, USA,
May 18-21, 201/, pages 459-474. IEEE Computer Society, 2014.
https://doi.org/10.1109/SP.2014.36.

Dan Boneh, Henry Corrigan-Gibbs, and Stuart E. Schechter. Bal-
loon hashing: A memory-hard function providing provable protec-
tion against sequential attacks. In Advances in Cryptology - ASI-
ACRYPT 2016 - 22nd International Conference on the Theory and
Application of Cryptology and Information Security, Hanoi, Viet-
nam, December 4-8, 2016, Proceedings, Part I, volume 10031 of
Lecture Notes in Computer Science, pages 220-248, 2016. https:
//doi.org/10.1007/978-3-662-53887-6_8.

Alex Biryukov and Daniel Feher. Portrait of a miner in a land-
scape. In IEEE INFOCOM 2019 - IEEE Conference on Com-
puter Communications Workshops, INFOCOM Workshops 2019,
Paris, France, April 29 - May 2, 2019, pages 638—643. IEEE, 2019.
https://doi.org/10.1109/INFCOMW.2019.8845201.

Alex Biryukov and Daniel Feher. Privacy and linkability of min-
ing in zcash. In 7th IEEE Conference on Communications and
Network Security, CNS 2019, Washington, DC, USA, June 10-12,
2019, pages 118-123. IEEE, 2019. https://doi.org/10.1109/
CNS.2019.8802711.

Alex Biryukov and Daniel Feher. Recon: Sybil-resistant consen-
sus from reputation. In Pervasive and Mobile Computing, vol-
ume 61, page 101109, 2020. https://doi.org/10.1016/j.pmcj.
2019.101109.

Alex Biryukov, Daniel Feher, and Giuseppe Vitto. Privacy aspects
and subliminal channels in zcash. In Proceedings of the 2019 ACM

https://doi.org/10.1007/978-3-319-96884-1_25
https://doi.org/10.1007/978-3-319-96884-1_25
https://doi.org/10.1145/2090236.2090263
https://doi.org/10.1145/2090236.2090263
https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1007/978-3-662-53887-6_8
https://doi.org/10.1007/978-3-662-53887-6_8
https://doi.org/10.1109/INFCOMW.2019.8845201
https://doi.org/10.1109/CNS.2019.8802711
https://doi.org/10.1109/CNS.2019.8802711
https://doi.org/10.1016/j.pmcj.2019.101109
https://doi.org/10.1016/j.pmcj.2019.101109

BIBLIOGRAPHY 111

SIGSAC Conference on Computer and Communications Security,
CCS 2019, London, UK, November 11-15, 2019, pages 1795-1811.
ACM, 2019. https://doi.org/10.1145/3319535.3345663.

[BGK'18] Christian Badertscher, Peter Gazi, Aggelos Kiayias, Alexander
Russell, and Vassilis Zikas. Ouroboros genesis: Composable proof-
of-stake blockchains with dynamic availability. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS 2018, Toronto, ON, Canada, October 15-19,
2018, pages 913-930. ACM, 2018. https://doi.org/10.1145/
3243734 .3243848.

[bit20] Bitcoin wiki - payment channels, 2020. https://en.bitcoin.it/
wiki/Payment_channels.

[BK16] Alex Biryukov and Dmitry Khovratovich. Equihash: Asymmetric
proof-of-work based on the generalized birthday problem. In 23rd
Annual Network and Distributed System Security Symposium,
NDSS 2016, San Diego, California, USA, February 21-24, 2016.
The Internet Society, 2016. http://wp.internetsociety.
org/ndss/wp-content/uploads/sites/25/2017/09/
equihash-asymmetric-proof-of-work-based-generalized-birthday-problem.
pdf.

[BKP14] Alex Biryukov, Dmitry Khovratovich, and Ivan Pustogarov.
Deanonymisation of clients in bitcoin P2P network. In Proceedings
of the 2014 ACM SIGSAC Conference on Computer and Com-
munications Security, Scottsdale, AZ, USA, November 3-7, 2014,
pages 15-29. ACM, 2014. https://doi.org/10.1145/2660267 .
2660379.

[BLMR14] Iddo Bentov, Charles Lee, Alex Mizrahi, and Meni Rosenfeld.
Proof of activity: Extending bitcoin’s proof of work via proof of
stake [extended abstract]y. In SIGMETRICS Perform. Evaluation
Rev., volume 42, pages 34-37, 2014. https://doi.org/10.1145/
2695533 .2695545.

[Bon16] Joseph Bonneau. Ethiks: Using ethereum to audit a CONIKS
key transparency log. In Financial Cryptography and Data Se-
curity - FC 2016 International Workshops, BITCOIN, VOTING,
and WAHC, Christ Church, Barbados, February 26, 2016, Revised
Selected Papers, volume 9604 of Lecture Notes in Computer Sci-
ence, pages 95-105. Springer, 2016. https://doi.org/10.1007/
978-3-662-53357-4_7.

[BP15] Alex Biryukov and Ivan Pustogarov. Bitcoin over tor isn’t a good
idea. In 2015 IEEE Symposium on Security and Privacy, SP 2015,
San Jose, CA, USA, May 17-21, 2015, pages 122-134. IEEE Com-
puter Society, 2015. https://doi.org/10.1109/SP.2015.15.

https://doi.org/10.1145/3319535.3345663
https://doi.org/10.1145/3243734.3243848
https://doi.org/10.1145/3243734.3243848
https://en.bitcoin.it/wiki/Payment_channels
https://en.bitcoin.it/wiki/Payment_channels
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/equihash-asymmetric-proof-of-work-based-generalized-birthday-problem.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/equihash-asymmetric-proof-of-work-based-generalized-birthday-problem.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/equihash-asymmetric-proof-of-work-based-generalized-birthday-problem.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/equihash-asymmetric-proof-of-work-based-generalized-birthday-problem.pdf
https://doi.org/10.1145/2660267.2660379
https://doi.org/10.1145/2660267.2660379
https://doi.org/10.1145/2695533.2695545
https://doi.org/10.1145/2695533.2695545
https://doi.org/10.1007/978-3-662-53357-4_7
https://doi.org/10.1007/978-3-662-53357-4_7
https://doi.org/10.1109/SP.2015.15

112

BIBLIOGRAPHY

[Bucl6]

[CBL17]

[ccol9]

[Cha82]

[CL99]

[CLN*08]

[CM18]

[Daiog]

[DD18]

[de 18]

Ethan Buchman. Tendermint: Byzantine fault toler-
ance in the age of blockchains. master thesis, 2016.
https://atrium.lib.uoguelph.ca/xmlui/bitstream/handle/
10214/9769/Buchman_Ethan_201606_MAsc.pdf?sequence=7.

Rémy Cazabet, Rym Baccour, and Matthieu Latapy. Tracking
bitcoin users activity using community detection on a network of
weak signals. In Complex Networks € Their Applications VI -
Proceedings of Complex Networks 2017 (The Sizth International
Conference on Complex Networks and Their Applications), COM-
PLEX NETWORKS 2017, Lyon, France, November 29 - De-
cember 1, 2017, volume 689 of Studies in Computational Intel-
ligence, pages 166-177. Springer, 2017. https://doi.org/10.
1007/978-3-319-72150-7_14.

Cryptocompare, 2019. https://data.cryptocompare.com/.

David Chaum. Blind signatures for untraceable payments. In
Advances in Cryptology: Proceedings of CRYPTO 82, Santa
Barbara, California, USA, August 23-25, 1982, pages 199-203.
Plenum Press, New York, 1982. https://doi.org/10.1007/
978-1-4757-0602-4_18.

Miguel Castro and Barbara Liskov. Practical byzantine fault tol-
erance. In Proceedings of the Third USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI), New Or-
leans, Louisiana, USA, February 22-25, 1999, pages 173-186.
USENIX Association, 1999. https://dl.acm.org/citation.
cfm?7i1d=296824.

Allen Clement, Harry C. Li, Jeff Napper, Jean-Philippe Martin,
Lorenzo Alvisi, and Michael Dahlin. BAR primer. In The 38th An-
nual IEEE/IFIP International Conference on Dependable Systems
and Networks, DSN 2008, June 24-27, 2008, Anchorage, Alaska,
USA, Proceedings, pages 287-296. IEEE Computer Society, 2008.
https://doi.org/10.1109/DSN.2008.4630097.

Brad Chase and Ethan MacBrough. Analysis of the XRP ledger
consensus protocol. CoRR, abs/1802.07242, 2018. http://arxiv.
org/abs/1802.07242.

Wei Dai. B-money. 1998. http://http://www.weidai.com/
bmoney . txt.

Evan Duffield and Daniel Diaz. Dash: A privacy-centric cryp-
tocurrency, 2018. https://github.com/dashpay/dash/wiki/
Whitepaper.

Alex de Vries. Bitcoin’s growing energy problem. In Joule, vol-
ume 2, pages 801 — 805, 2018. http://www.sciencedirect.com/
science/article/pii/S2542435118301776.

https://atrium.lib.uoguelph.ca/xmlui/bitstream/handle/10214/9769/Buchman_Ethan_201606_MAsc.pdf?sequence=7
https://atrium.lib.uoguelph.ca/xmlui/bitstream/handle/10214/9769/Buchman_Ethan_201606_MAsc.pdf?sequence=7
https://doi.org/10.1007/978-3-319-72150-7_14
https://doi.org/10.1007/978-3-319-72150-7_14
https://data.cryptocompare.com/
https://doi.org/10.1007/978-1-4757-0602-4_18
https://doi.org/10.1007/978-1-4757-0602-4_18
https://dl.acm.org/citation.cfm?id=296824
https://dl.acm.org/citation.cfm?id=296824
https://doi.org/10.1109/DSN.2008.4630097
http://arxiv.org/abs/1802.07242
http://arxiv.org/abs/1802.07242
http://http://www.weidai.com/bmoney.txt
http://http://www.weidai.com/bmoney.txt
https://github.com/dashpay/dash/wiki/Whitepaper
https://github.com/dashpay/dash/wiki/Whitepaper
http://www.sciencedirect.com/science/article/pii/S2542435118301776
http://www.sciencedirect.com/science/article/pii/S2542435118301776

BIBLIOGRAPHY 113

[DFKP15]

[DGH*87]

[DGKR18]

[DHT6]

[DN92]

[Dou02]

[DSO01]

[DW13]

Stefan Dziembowski, Sebastian Faust, Vladimir Kolmogorov,
and Krzysztof Pietrzak. Proofs of space. In Advances in
Cryptology - CRYPTO 2015 - 35th Annual Cryptology Confer-
ence, Santa Barbara, CA, USA, August 16-20, 2015, Proceed-
ings, Part II, volume 9216 of Lecture Notes in Computer Sci-
ence, pages 585-605. Springer, 2015. https://doi.org/10.1007/
978-3-662-48000-7_29.

Alan J. Demers, Daniel H. Greene, Carl Hauser, Wes Irish, John
Larson, Scott Shenker, Howard E. Sturgis, Daniel C. Swinehart,
and Douglas B. Terry. Epidemic algorithms for replicated database
maintenance. In Proceedings of the Sizth Annual ACM Sympo-
sium on Principles of Distributed Computing, Vancouver, British
Columbia, Canada, August 10-12, 1987, pages 1-12. ACM, 1987.
https://doi.org/10.1145/41840.41841.

Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Rus-
sell. Ouroboros praos: An adaptively-secure, semi-synchronous
proof-of-stake blockchain. In Advances in Cryptology - EURO-
CRYPT 2018 - 37th Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, Tel Aviv, Is-
rael, April 29 - May 3, 2018 Proceedings, Part II, volume 10821 of
Lecture Notes in Computer Science, pages 66-98. Springer, 2018.
https://doi.org/10.1007/978-3-319-78375-8_3.

Whitfield Diffie and Martin E. Hellman. New directions in cryp-
tography. In IEEFE Trans. Inf. Theory, volume 22, pages 644654,
1976. https://doi.org/10.1109/TIT.1976.1055638.

Cynthia Dwork and Moni Naor. Pricing via processing or com-
batting junk mail. In Advances in Cryptology - CRYPTO 92,
12th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 16-20, 1992, Proceedings, volume 740 of
Lecture Notes in Computer Science, pages 139-147. Springer, 1992.
https://doi.org/10.1007/3-540-48071-4_10.

John R. Douceur. The sybil attack. In Peer-to-Peer Systems,
First International Workshop, IPTPS 2002, Cambridge, MA,
USA, March 7-8, 2002, Revised Papers, volume 2429 of Lec-
ture Notes in Computer Science, pages 251-260. Springer, 2002.
https://doi.org/10.1007/3-540-45748-8_24.

Drew Dean and Adam Stubblefield. Using client puzzles to protect
TLS. In 10th USENIX Security Symposium, August 13-17, 2001,

Washington, D.C., USA. USENIX, 2001. http://www.usenix.
org/publications/library/proceedings/sec0O1l/dean.html.

Christian Decker and Roger Wattenhofer. Information propaga-
tion in the bitcoin network. In 15th IEEE International Con-
ference on Peer-to-Peer Computing, IEEE P2P 2013, Trento,

https://doi.org/10.1007/978-3-662-48000-7_29
https://doi.org/10.1007/978-3-662-48000-7_29
https://doi.org/10.1145/41840.41841
https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1007/3-540-48071-4_10
https://doi.org/10.1007/3-540-45748-8_24
http://www.usenix.org/publications/library/proceedings/sec01/dean.html
http://www.usenix.org/publications/library/proceedings/sec01/dean.html

114

BIBLIOGRAPHY

[EGSVR16]

[ES18]

[eth20]

[Eyal5]

[FS07]

[GHM+17]

[HBHW16]

[int17]

[IMVO1]

Italy, September 9-11, 2013, Proceedings, pages 1-10. IEEE, 2013.
https://doi.org/10.1109/P2P.2013.6688704.

Ittay Eyal, Adem Efe Gencer, Emin Giin Sirer, and Rob-
bert van Renesse. Bitcoin-ng: A scalable blockchain pro-
tocol. In 13th USENIX Symposium on Networked Systems
Design and Implementation, NSDI 2016, Santa Clara, CA,
USA, March 16-18, 2016, pages 45-59. USENIX Associa-
tion, 2016. https://www.usenix.org/conference/nsdil6/
technical-sessions/presentation/eyal.

Ittay Eyal and Emin Giin Sirer. Majority is not enough: bitcoin
mining is vulnerable. In Commun. ACM, volume 61, pages 95-102,
2018. https://doi.org/10.1145/3212998.

Ethereum wiki - ethash, 2020. https://eth.wiki/en/concepts/
ethash/ethash.

Ittay Eyal. The miner’s dilemma. In 2015 IEEE Symposium on
Security and Privacy, SP 2015, San Jose, CA, USA, May 17-
21, 2015, pages 89-103. IEEE Computer Society, 2015. https:
//doi.org/10.1109/SP.2015.13.

Eiichiro Fujisaki and Koutarou Suzuki. Traceable ring signature.
In Public Key Cryptography - PKC 2007, 10th International Con-
ference on Practice and Theory in Public-Key Cryptography, Bei-
jing, China, April 16-20, 2007, Proceedings, volume 4450 of Lec-
ture Notes in Computer Science, pages 181-200. Springer, 2007.
https://doi.org/10.1007/978-3-540-71677-8_13.

Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and
Nickolai Zeldovich. Algorand: Scaling byzantine agreements for
cryptocurrencies. In Proceedings of the 26th Symposium on Oper-
ating Systems Principles, Shanghai, China, October 28-31, 2017,
pages 51-68. ACM, 2017. https://doi.org/10.1145/3132747.
3132757.

Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan Wilcox.
Zcash protocol specification. Technical report, Tech. rep. 2016-
1.10. Zerocoin Electric Coin Company, 2016. https://github.
com/zcash/zips/blob/master/protocol/protocol.pdf.

Intel: Sawtooth lake. Technical report, 2017. https://github.
com/hyperledger/sawtooth-core.

Don Johnson, Alfred Menezes, and Scott A. Vanstone. The el-
liptic curve digital signature algorithm (ECDSA). In Int. J. Inf.
Sec., volume 1, pages 36-63, 2001. https://doi.org/10.1007/
$102070100002.

https://doi.org/10.1109/P2P.2013.6688704
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/eyal
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/eyal
https://doi.org/10.1145/3212998
https://eth.wiki/en/concepts/ethash/ethash
https://eth.wiki/en/concepts/ethash/ethash
https://doi.org/10.1109/SP.2015.13
https://doi.org/10.1109/SP.2015.13
https://doi.org/10.1007/978-3-540-71677-8_13
https://doi.org/10.1145/3132747.3132757
https://doi.org/10.1145/3132747.3132757
https://github.com/zcash/zips/blob/master/protocol/protocol.pdf
https://github.com/zcash/zips/blob/master/protocol/protocol.pdf
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://doi.org/10.1007/s102070100002
https://doi.org/10.1007/s102070100002

BIBLIOGRAPHY 115

[KAD09]

[KFTS17]

[KJG*16]

[KJG*18]

[KKZ20]

[KML+20]

[KRDO17]

Ramakrishna Kotla, Lorenzo Alvisi, Michael Dahlin, Allen
Clement, and Edmund L. Wong. Zyzzyva: Speculative byzantine
fault tolerance. In ACM Trans. Comput. Syst., volume 27, pages
7:1-7:39, 2009. https://doi.org/10.1145/1658357.1658358.

Amrit Kumar, Clément Fischer, Shruti Tople, and Prateek Sax-
ena. A traceability analysis of monero’s blockchain. In Com-
puter Security - ESORICS 2017 - 22nd Furopean Symposium on
Research in Computer Security, Oslo, Norway, September 11-
15, 2017, Proceedings, Part II, volume 10493 of Lecture Notes
in Computer Science, pages 153-173. Springer, 2017. https:
//doi.org/10.1007/978-3-319-66399-9_9.

Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly,
Ismail Khoffi, Linus Gasser, and Bryan Ford. Enhancing
bitcoin security and performance with strong consistency
via collective signing. In 25th USENIX Security Sym-
posium, USENIX Security 16, Austin, TX, USA, August
10-12, 2016, pages 279-296. USENIX Association, 2016.
https://www.usenix.org/conference/usenixsecurity16/
technical-sessions/presentation/kogias.

Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nico-
las Gailly, Ewa Syta, and Bryan Ford. Omniledger: A secure, scale-
out, decentralized ledger via sharding. In 2018 IEEE Symposium
on Security and Privacy, SP 2018, Proceedings, 21-23 May 2018,
San Francisco, California, USA, pages 583-598. IEEE Computer
Society, 2018. https://doi.org/10.1109/SP.2018.000-5.

Kostis Karantias, Aggelos Kiayias, and Dionysis Zindros. Proof-of-
burn. In Financial Cryptography and Data Security - 24th Inter-
national Conference, FC' 2020, Kota Kinabalu, Malaysia, Febru-
ary 10-14, 2020 Revised Selected Papers, volume 12059 of Lec-
ture Notes in Computer Science, pages 523-540. Springer, 2020.
https://doi.org/10.1007/978-3-030-51280-4_28.

Harry A. Kalodner, Malte Mdser, Kevin Lee, Steven Goldfeder,
Martin Plattner, Alishah Chator, and Arvind Narayanan.
Blocksci: Design and applications of a blockchain analysis plat-
form. In 29th USENIX Security Symposium, USENIX Se-
curity 2020, August 12-14, 2020, pages 2721-2738. USENIX
Association, 2020. https://www.usenix.org/conference/
usenixsecurity20/presentation/kalodner.

Aggelos Kiayias, Alexander Russell, Bernardo David, and Ro-
man Oliynykov. Ouroboros: A provably secure proof-of-stake
blockchain protocol. In Advances in Cryptology - CRYPTO 2017 -
37th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 20-24, 2017, Proceedings, Part I, volume 10401

https://doi.org/10.1145/1658357.1658358
https://doi.org/10.1007/978-3-319-66399-9_9
https://doi.org/10.1007/978-3-319-66399-9_9
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/kogias
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/kogias
https://doi.org/10.1109/SP.2018.000-5
https://doi.org/10.1007/978-3-030-51280-4_28
https://www.usenix.org/conference/usenixsecurity20/presentation/kalodner
https://www.usenix.org/conference/usenixsecurity20/presentation/kalodner

116

BIBLIOGRAPHY

[KSGO3]

[KYMMI8]

[LamO98|

[LD20]

[LF16]

[LLHO3]

[LLJ*11]

[LMAG*15]

[LNZ+16]

of Lecture Notes in Computer Science, pages 357-388. Springer,
2017. https://doi.org/10.1007/978-3-319-63688-7_12.

Sepandar D. Kamvar, Mario T. Schlosser, and Hector Garcia-
Molina. The eigentrust algorithm for reputation management in
P2P networks. In Proceedings of the Twelfth International World
Wide Web Conference, WWW 2003, Budapest, Hungary, May
20-24, 2003, pages 640-651. ACM, 2003. https://doi.org/10.
1145/775152.775242.

George Kappos, Haaroon Yousaf, Mary Maller, and Sarah Meik-
lejohn. An empirical analysis of anonymity in zcash. In 27th
USENIX Security Symposium, USENIX Security 2018, Balti-
more, MD, USA, August 15-17, 2018, pages 463-477. USENIX
Association, 2018. https://www.usenix.org/conference/
usenixsecurityl8/presentation/kappos.

Leslie Lamport. The part-time parliament. In ACM Trans. Com-
put. Syst., volume 16, pages 133-169, 1998. https://doi.org/
10.1145/279227 .279229.

Duke Leto and The Hush Developers. Attacking zcash for fun
and profit. Cryptology ePrint Archive, Report 2020/627, 2020.
https://eprint.iacr.org/2020/627.

Matthias Lischke and Benjamin Fabian. Analyzing the bitcoin
network: The first four years. In Future Internet, volume 8, page 7,
2016. https://doi.org/10.3390/£i8010007.

Zhangxi Lin, Dahui Li, and Wayne Huang. Current security
management & ethical issues of information technology. chap-
ter Reputation, Reputation System and Reputation Distribu-
tion: An Exploratory Study in Online Consumer-to-consumer
Auctions, pages 249-266. IGI Global, Hershey, PA, USA, 2003.
http://dl.acm.org/citation.cfm?id=949953.949968.

Yining Liu, Keqiu Li, Yingwei Jin, Yong Zhang, and Wenyu Qu.
A novel reputation computation model based on subjective logic
for mobile ad hoc networks. In Future Gener. Comput. Syst.,
volume 27, pages 547-5564, 2011. https://doi.org/10.1016/j.
future.2010.03.006.

Paul Lajoie-Mazenc, Emmanuelle Anceaume, Gilles Guette,
Thomas Sirvent, and Valérie Viet Triem Tong. Efficient dis-
tributed privacy-preserving reputation mechanism handling non-
monotonic ratings. 2015. https://hal.archives-ouvertes.fr/
hal-01104837/document.

Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja,
Seth Gilbert, and Prateek Saxena. A secure sharding protocol

https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1145/775152.775242
https://doi.org/10.1145/775152.775242
https://www.usenix.org/conference/usenixsecurity18/presentation/kappos
https://www.usenix.org/conference/usenixsecurity18/presentation/kappos
https://doi.org/10.1145/279227.279229
https://doi.org/10.1145/279227.279229
https://eprint.iacr.org/2020/627
https://doi.org/10.3390/fi8010007
http://dl.acm.org/citation.cfm?id=949953.949968
https://doi.org/10.1016/j.future.2010.03.006
https://doi.org/10.1016/j.future.2010.03.006
https://hal.archives-ouvertes.fr/hal-01104837/document
https://hal.archives-ouvertes.fr/hal-01104837/document

BIBLIOGRAPHY 117

[LSP82]

[Maz15]

[MB17]

[MMSH16]

[mon14]
[MPJ*13a]

[MPJ*13b)]

[MRV99)]

for open blockchains. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, Vienna,
Austria, October 24-28, 2016, pages 17-30. ACM, 2016. https:
//doi.org/10.1145/2976749.2978389.

Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The
byzantine generals problem. In ACM Trans. Program. Lang. Syst.,
volume 4, pages 382-401, 1982. http://doi.acm.org/10.1145/
357172.357176.

David Magzieres. The stellar consensus protocol: A feder-
ated model for internet-level consensus. Draft, Stellar Devel-
opment Foundation, 2015. https://www.stellar.org/papers/
stellarconsensus-protocol.pdf.

Malte Moser and Rainer Bohme. The price of anonymity: em-
pirical evidence from a market for bitcoin anonymization. In J.
Cybersecur., volume 3, pages 127-135, 2017. https://doi.org/
10.1093/cybsec/tyx007.

Patrick McCorry, Malte Moser, Siamak Fayyaz Shahandashti,
and Feng Hao. Towards bitcoin payment networks. In In-
formation Security and Privacy - 21st Australasian Conference,
ACISP 2016, Melbourne, VIC, Australia, July 4-6, 2016, Pro-
ceedings, Part I, volume 9722 of Lecture Notes in Computer Sci-
ence, pages H7-76. Springer, 2016. https://doi.org/10.1007/
978-3-319-40253-6_4.

Monero, 2014. https://getmonero.org.

Sarah Meiklejohn, Marjori Pomarole, Grant Jordan, Kir-
ill Levchenko, Damon McCoy, Geoffrey M. Voelker, and
Stefan Savage. A fistful of bitcoins: Characterizing pay-
ments among men with no names. In login Useniz
Mag., volume 38, 2013. https://www.usenix.org/
publications/login/december-2013-volume-38-number-6/
fistful-bitcoins-characterizing-payments-among.

Sarah Meiklejohn, Marjori Pomarole, Grant Jordan, Kir-
ill Levchenko, Damon McCoy, Geoffrey M. Voelker, and
Stefan Savage. A fistful of bitcoins: Characterizing pay-
ments among men with no names. In login Useniz
Mag., volume 38, 2013. https://www.usenix.org/
publications/login/december-2013-volume-38-number-6/
fistful-bitcoins-characterizing-payments—among.

Silvio Micali, Michael O. Rabin, and Salil P. Vadhan. Verifiable
random functions. In 40th Annual Symposium on Foundations of
Computer Science, FOCS 99, 17-18 October, 1999, New York,
NY, USA, pages 120-130. IEEE Computer Society, 1999. https:
//doi.org/10.1109/SFFCS.1999.814584.

https://doi.org/10.1145/2976749.2978389
https://doi.org/10.1145/2976749.2978389
http://doi.acm.org/10.1145/357172.357176
http://doi.acm.org/10.1145/357172.357176
https://www.stellar.org/papers/stellarconsensus-protocol.pdf
https://www.stellar.org/papers/stellarconsensus-protocol.pdf
https://doi.org/10.1093/cybsec/tyx007
https://doi.org/10.1093/cybsec/tyx007
https://doi.org/10.1007/978-3-319-40253-6_4
https://doi.org/10.1007/978-3-319-40253-6_4
https://getmonero.org
https://www.usenix.org/publications/login/december-2013-volume-38-number-6/fistful-bitcoins-characterizing-payments-among
https://www.usenix.org/publications/login/december-2013-volume-38-number-6/fistful-bitcoins-characterizing-payments-among
https://www.usenix.org/publications/login/december-2013-volume-38-number-6/fistful-bitcoins-characterizing-payments-among
https://www.usenix.org/publications/login/december-2013-volume-38-number-6/fistful-bitcoins-characterizing-payments-among
https://www.usenix.org/publications/login/december-2013-volume-38-number-6/fistful-bitcoins-characterizing-payments-among
https://www.usenix.org/publications/login/december-2013-volume-38-number-6/fistful-bitcoins-characterizing-payments-among
https://doi.org/10.1109/SFFCS.1999.814584
https://doi.org/10.1109/SFFCS.1999.814584

118

BIBLIOGRAPHY

[MSH*18]

[MXC*16]

[Nak09]

[INKMS16]

[Noel5|

(0014]

[0ST15]

[PBMWO]

[Piel9)

Malte Moser, Kyle Soska, Ethan Heilman, Kevin Lee, Henry Hef-
fan, Shashvat Srivastava, Kyle Hogan, Jason Hennessey, Andrew
Miller, Arvind Narayanan, and Nicolas Christin. An empiri-
cal analysis of traceability in the monero blockchain. In Proc.
Priv. Enhancing Technol., volume 2018, pages 143-163, 2018.
https://doi.org/10.1515/popets-2018-0025.

Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song.
The honey badger of BFT protocols. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Se-
curity, Vienna, Austria, October 24-28, 2016, pages 31-42. ACM,
2016. https://doi.org/10.1145/2976749.2978399.

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system.
2009. http://www.bitcoin.org/bitcoin.pdf.

Kartik Nayak, Srijan Kumar, Andrew Miller, and Elaine Shi. Stub-
born mining: Generalizing selfish mining and combining with an
eclipse attack. In IEEFE Furopean Symposium on Security and Pri-
vacy, BuroSEP 2016, Saarbricken, Germany, March 21-2/, 2016,
pages 305-320. IEEE, 2016. https://doi.org/10.1109/EuroSP.
2016.32.

Shen Noether. Ring signature confidential transactions for monero.
Cryptology ePrint Archive, Report 2015/1098, 2015. https://
eprint.iacr.org/2015/1098.

Diego Ongaro and John K. Ousterhout. In search of an
understandable consensus algorithm. In 201, USENIX An-
nual Technical Conference, USENIX ATC ’14, Philadelphia,
PA, USA, June 19-20, 2014, pages 305-319. USENIX Asso-
ciation, 2014. https://www.usenix.org/conference/atcl4/
technical-sessions/presentation/ongaro.

National Institute of Standards and Technology. Secure hash stan-
dard (shs), 2015. https://doi.org/10.6028/NIST.FIPS.180-4.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Wino-
grad. The pagerank citation ranking: Bringing order to the
web. Technical report, Stanford InfoLab, 1999. http://ilpubs.
stanford.edu:8090/422/1/1999-66.pdf.

Krzysztof Pietrzak. Simple verifiable delay functions. In 10th Inno-
vations in Theoretical Computer Science Conference, ITCS 2019,
January 10-12, 2019, San Diego, California, USA, volume 124
of LIPIcs, pages 60:1-60:15. Schloss Dagstuhl - Leibniz-Zentrum
fiir Informatik, 2019. https://doi.org/10.4230/LIPIcs.ITCS.
2019.60.

https://doi.org/10.1515/popets-2018-0025
https://doi.org/10.1145/2976749.2978399
http://www.bitcoin.org/bitcoin.pdf
https://doi.org/10.1109/EuroSP.2016.32
https://doi.org/10.1109/EuroSP.2016.32
https://eprint.iacr.org/2015/1098
https://eprint.iacr.org/2015/1098
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://doi.org/10.6028/NIST.FIPS.180-4
http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf
http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf
https://doi.org/10.4230/LIPIcs.ITCS.2019.60
https://doi.org/10.4230/LIPIcs.ITCS.2019.60

BIBLIOGRAPHY 119

[PJ16]

[QuelT]

[RH11a]

[RH11b]

[Rik]

[Ros11]

[RS13]

[RSATS]

[shil9]

Colin Percival and Simon Josefsson. The scrypt password-based
key derivation function. Technical report, 2016. https://doi.
org/10.17487/RFC7914.

Jeffrey Quesnelle. On the linkability of zcash transactions. CoRR,
abs/1712.01210, 2017. http://arxiv.org/abs/1712.01210.

Fergal Reid and Martin Harrigan. An analysis of anonymity in
the bitcoin system. In PASSAT/SocialCom 2011, Privacy, Se-
curity, Risk and Trust (PASSAT), 2011 IEEE Third Interna-
tional Conference on and 2011 IEEE Third International Con-
ference on Social Computing (SocialCom), Boston, MA, USA, 9-
11 Oct., 2011, pages 1318-1326. IEEE Computer Society, 2011.
https://doi.org/10.1109/PASSAT/SocialCom.2011.79.

Fergal Reid and Martin Harrigan. An analysis of anonymity in
the bitcoin system. In PASSAT/SocialCom 2011, Privacy, Se-
curity, Risk and Trust (PASSAT), 2011 IEEE Third Interna-
tional Conference on and 2011 IEEE Third International Con-
ference on Social Computing (SocialCom), Boston, MA, USA, 9-
11 Oct., 2011, pages 1318-1326. IEEE Computer Society, 2011.
https://doi.org/10.1109/PASSAT/SocialCom.2011.79.

Sveriges Riksbank. Payments in sweden 2019.
https://www.riksbank.se/globalassets/media/
rapporter/sa-betalar-svenskarna/2019/engelska/
payments—-in-sweden-2019.pdf.

Meni Rosenfeld. Analysis of bitcoin pooled mining reward systems.
CoRR, abs/1112.4980, 2011. http://arxiv.org/abs/1112.4980.

Dorit Ron and Adi Shamir. Quantitative analysis of the full bitcoin
transaction graph. In Financial Cryptography and Data Security
- 17th International Conference, FC 2013, Okinawa, Japan, April
1-5, 2013, Revised Selected Papers, volume 7859 of Lecture Notes
in Computer Science, pages 6-24. Springer, 2013. https://doi.
org/10.1007/978-3-642-39884-1_2.

Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A
method for obtaining digital signatures and public-key cryptosys-
tems. In Commun. ACM, volume 21, pages 120-126, 1978. http:
//doi.acm.org/10.1145/359340.359342.

Shielded coinbase, 2019. https://zips.z.cash/zip-0213.

https://doi.org/10.17487/RFC7914
https://doi.org/10.17487/RFC7914
http://arxiv.org/abs/1712.01210
https://doi.org/10.1109/PASSAT/SocialCom.2011.79
https://doi.org/10.1109/PASSAT/SocialCom.2011.79
https://www.riksbank.se/globalassets/media/rapporter/sa-betalar-svenskarna/2019/engelska/payments-in-sweden-2019.pdf
https://www.riksbank.se/globalassets/media/rapporter/sa-betalar-svenskarna/2019/engelska/payments-in-sweden-2019.pdf
https://www.riksbank.se/globalassets/media/rapporter/sa-betalar-svenskarna/2019/engelska/payments-in-sweden-2019.pdf
http://arxiv.org/abs/1112.4980
https://doi.org/10.1007/978-3-642-39884-1_2
https://doi.org/10.1007/978-3-642-39884-1_2
http://doi.acm.org/10.1145/359340.359342
http://doi.acm.org/10.1145/359340.359342
https://zips.z.cash/zip-0213

120

BIBLIOGRAPHY

[SMPS7]

[SMZ14]

[STV*16]

[5713]

[Sza0b]

[Tay13]

[TE18]

[vis15]

[vS13]

Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Non-
interactive zero-knowledge proof systems. In Advances in Cryp-
tology - CRYPTO ’87, A Conference on the Theory and Ap-
plications of Cryptographic Techniques, Santa Barbara, Califor-
nia, USA, August 16-20, 1987, Proceedings, volume 293 of Lec-
ture Notes in Computer Science, pages 52-72. Springer, 1987.
https://doi.org/10.1007/3-540-48184-2_5.

Michele Spagnuolo, Federico Maggi, and Stefano Zanero. Bitio-
dine: Extracting intelligence from the bitcoin network. In Finan-
cial Cryptography and Data Security - 18th International Confer-
ence, FC 2014, Christ Church, Barbados, March 3-7, 2014, Re-
vised Selected Papers, volume 8437 of Lecture Notes in Computer
Science, pages 457-468. Springer, 2014. https://doi.org/10.
1007/978-3-662-45472-5_29.

Ewa Syta, Iulia Tamas, Dylan Visher, David Isaac Wolinsky,
Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ismail Khoffi, and
Bryan Ford. Keeping authorities "honest or bust” with decen-
tralized witness cosigning. In IEEE Symposium on Security and
Privacy, SP 2016, San Jose, CA, USA, May 22-26, 2016, pages
526-545. IEEE Computer Society, 2016. https://doi.org/10.
1109/8P.2016.38.

Yonatan Sompolinsky and Aviv Zohar. Accelerating bitcoin’s
transaction processing. fast money grows on trees, not chains.
Cryptology ePrint Archive, Report 2013/881, 2013. https://
eprint.iacr.org/2013/881.

Nick Szabo. Bit gold. 2005. https://unenumerated.blogspot.
com/2005/12/bit-gold.html.

Michael Bedford Taylor. Bitcoin and the age of bespoke silicon. In
International Conference on Compilers, Architecture and Synthe-
sis for Embedded Systems, CASES 2013, Montreal, QC, Canada,
September 29 - October 4, 2013, pages 16:1-16:10. IEEE, 2013.
https://doi.org/10.1109/CASES.2013.6662520.

Itay Tsabary and Ittay Eyal. The gap game. In Proceedings of the
11th ACM International Systems and Storage Conference, SYS-
TOR 2018, HAIFA, Israel, June 04-07, 2018, page 132. ACM,
2018. https://doi.org/10.1145/3211890.3211905.

Visa inc. at a glance, 2015. https://usa.visa.com/dam/VCOM/
download/corporate/media/visa-fact-sheet-Jun2015.pdf.

Nicolas van Saberhagen. Cryptonote v 2.0. 2013. https:
//cryptonote.org/whitepaper.pdf.

https://doi.org/10.1007/3-540-48184-2_5
https://doi.org/10.1007/978-3-662-45472-5_29
https://doi.org/10.1007/978-3-662-45472-5_29
https://doi.org/10.1109/SP.2016.38
https://doi.org/10.1109/SP.2016.38
https://eprint.iacr.org/2013/881
https://eprint.iacr.org/2013/881
https://unenumerated.blogspot.com/2005/12/bit-gold.html
https://unenumerated.blogspot.com/2005/12/bit-gold.html
https://doi.org/10.1109/CASES.2013.6662520
https://doi.org/10.1145/3211890.3211905
https://usa.visa.com/dam/VCOM/download/corporate/media/visa-fact-sheet-Jun2015.pdf
https://usa.visa.com/dam/VCOM/download/corporate/media/visa-fact-sheet-Jun2015.pdf
https://cryptonote.org/whitepaper.pdf
https://cryptonote.org/whitepaper.pdf

BIBLIOGRAPHY 121

[Wes19]

[WJT20]

[Wool4]

[YKDV19]

[ZMR18]

Benjamin Wesolowski. Efficient verifiable delay functions. In Ad-
vances in Cryptology - EUROCRYPT 2019 - 38th Annual Inter-
national Conference on the Theory and Applications of Crypto-
graphic Techniques, Darmstadt, Germany, May 19-23, 2019, Pro-
ceedings, Part III, volume 11478 of Lecture Notes in Computer
Science, pages 379-407. Springer, 2019. https://doi.org/10.
1007/978-3-030-17659-4_13.

Pieter Wuille, Nick Jonas, and Anthony Towns. Bip-341. tap-
root: Segwit version 1 spending rules, 2020. https://github.
com/bitcoin/bips/blob/master/bip-0341.mediawiki.

Gavin Wood. Ethereum: A secure decentralised generalised trans-
action ledger. Ethereum Project Yellow Paper, 2014. http:
//gavwood.com/paper . pdf.

Jiangshan Yu, David Kozhaya, Jeremie Decouchant, and Paulo
Jorge Esteves Verissimo. Repucoin: Your reputation is your power.
In IEEFE Trans. Computers, volume 68, pages 1225-1237, 2019.
https://doi.org/10.1109/TC.2019.2900648.

Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. Rapid-
chain: Scaling blockchain via full sharding. In Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS 2018, Toronto, ON, Canada, October 15-19,
2018, pages 931-948. ACM, 2018. https://doi.org/10.1145/
3243734 .3243853.

https://doi.org/10.1007/978-3-030-17659-4_13
https://doi.org/10.1007/978-3-030-17659-4_13
https://github.com/bitcoin/bips/blob/master/bip-0341.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0341.mediawiki
http://gavwood.com/paper.pdf
http://gavwood.com/paper.pdf
https://doi.org/10.1109/TC.2019.2900648
https://doi.org/10.1145/3243734.3243853
https://doi.org/10.1145/3243734.3243853

123

List of Publications

1. Alex Biryukov and Daniel Feher. Portrait of a miner in a landscape. In
IEEE INFOCOM 2019 - IEEE Conference on Computer Communications
Workshops, INFOCOM Workshops 2019, Paris, France, April 29 - May 2,
2019, pages 638-643. IEEE, 2019. https://doi.org/10.1109/INFCOMW.
2019.8845201

2. Alex Biryukov and Daniel Feher. Privacy and linkability of mining in
zcash. In 7th IEEE Conference on Communications and Network Secu-
rity, CNS 2019, Washington, DC, USA, June 10-12, 2019, pages 118-123.
IEEE, 2019. https://doi.org/10.1109/CNS.2019.8802711

3. Alex Biryukov, Daniel Feher, and Giuseppe Vitto. Privacy aspects and
subliminal channels in zcash. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2019, Lon-
don, UK, November 11-15, 2019, pages 1795-1811. ACM, 2019. https:
//doi.org/10.1145/3319535.3345663

4. Alex Biryukov and Daniel Feher. Recon: Sybil-resistant consensus from
reputation. In Pervasive and Mobile Computing, volume 61, page 101109,
2020. https://doi.org/10.1016/j.pmcj.2019.101109

https://doi.org/10.1109/INFCOMW.2019.8845201
https://doi.org/10.1109/INFCOMW.2019.8845201
https://doi.org/10.1109/CNS.2019.8802711
https://doi.org/10.1145/3319535.3345663
https://doi.org/10.1145/3319535.3345663
https://doi.org/10.1016/j.pmcj.2019.101109

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Currencies
	Main Challenges of Digital Currencies
	Digital Currencies

	Bitcoin
	Transaction Structure
	Blocks
	Proof-of-Work Protocol
	Mining Hardware
	Mining Pools
	Network Communication
	Security of Bitcoin
	Advantages and Disadvantages
	Main Actors in Bitcoin

	Scalability of Cryptocurrencies
	Privacy in Cryptocurrencies
	Privacy-oriented Cryptocurrencies

	Contributions

	I Data Analytics in Blockchains
	Deanonymizing Miners in Zcash
	Zcash
	Notation

	Analytics tool for Zcash
	Related Work
	Deanonymizing The Miners
	Pattern T Mining Pools
	Pattern Z Mining Pools
	Results of the Heuristics
	Accuracy of the Heuristics
	Comparison of results to previous work
	Inflation of results

	Summary and Conclusions

	Further Transaction Linking in Zcash
	Linking with Transaction Values
	Direct Value Linking Including Transaction Fees
	Subset sum
	Fingerprinted Values
	Further Results

	The Model for the Probability of Fingerprint Survival
	Experimental results
	Notation
	Sapling Transactions Dataset

	Danaan-Gift Attack (Malicious Value Fingerprinting)
	Dust Attack
	Official Linux Command-line Zcash Wallet
	GUI-based Sapling-supporting Wallets
	Combining Danaan and Dust Attacks

	Usage of zk-SNARKs
	Interaction Between Sapling and Sprout Transactions

	Summary and Conclusions

	Privacy of Miners in Zcash and Ethereum
	Terminology
	Background and Related Work
	Mining Landscape
	Ethereum
	Zcash
	GPU Mining
	GPU vs ASIC mining

	Detecting ASIC miners
	Fraction of large miners in the mining power
	Mining Software Developer Fees
	Public Introduction of ASICs

	Mining Centralization
	Privacy of Miners
	Linkability of Mining rewards
	Countermeasures

	Summary and Conclusions

	Estimating Exchange Traffic
	Evaluating Identified Clusters
	Classifying Large Clusters
	Summary and Conclusions

	II Consensus Protocols in Blockchains
	ReCon
	Related Work
	Existing Consensus Protocols
	Proof-of-Work
	Proof-of-Stake
	Byzantine Agreement
	Hybrid Protocols

	Preliminaries of Our Protocol
	Generic
	Assumptions
	Nodes

	Reputation module
	External Reputation
	Committee selection
	Rewards and penalties
	Probability of a forgery
	Types of Blocks
	Source of randomness
	Fairness
	Dealing with forks
	Convergence
	Pseudocode

	Simulation Results
	External reputation: discrete (no information)
	External reputation with normal distribution
	External reputation with exponential distribution

	Attacks and their mitigation
	Botnet takeover
	Sybil attack: saturation
	Sybil attack: lie and wait strategy
	Attacks on randomness
	Honest majority
	Detection based on the success rate

	Summary and Conclusions

	Summary and Conclusions
	Future Works

