
 ISSN 2379-5980 (online)
 DOI 10.5915/LEDGER.2018.101

	
	

RESEARCH ARTICLE

Data Insertion in Bitcoin’s Blockchain
Andrew Sward,† Ivy Vecna,‡ Forrest Stonedahl§*

Abstract. This paper provides the first comprehensive survey of methods for inserting
arbitrary data into Bitcoin’s blockchain. Historical methods of data insertion are described,
along with lesser-known techniques that are optimized for efficiency. Insertion methods are
compared on the basis of efficiency, cost, convenience of data reconstruction, permanence,
and potentially negative impact on the Bitcoin ecosystem.

1. Introduction

From its genesis block, and the now infamous headline that Satoshi chose to inscribe as the
first permanent message in the Blockchain, Bitcoin has been utilized as a free speech
platform.1, 2 In addition to exchanging digital currency on a global scale, Bitcoin also provides
users with the ability to publish information that cannot be censored or retracted, and will be
permanently available to the world (as long as Bitcoin itself persists).3 However, the Bitcoin
community is divided with regard to whether this use of Bitcoin as a platform for data
publication/storage is an appropriate one:

“The use of bitcoin’s blockchain to store data unrelated to bitcoin payments is
a controversial subject. Many developers consider such use abusive and want
to discourage it. Others view it as a demonstration of the powerful capabilities
of blockchain technology and want to encourage such experimentation.”

-Andreas Antonopoulos4

Everyone has their own vision of what Bitcoin can and should be used for. While we are

inclined to favor the view that the insertion of data can be a legitimate and valuable use of the
Blockchain, the purpose of this article is not to argue in favor of (or against) the practice;
rather, it is to enumerate the historical and efficient methods of data publication, and to
examine the benefits and drawbacks corresponding to each method. Specifically, we will
compare data publication methods on the basis of efficiency, cost, convenience of data
reconstruction, permanence, and the potentially negative impact on the Bitcoin ecosystem.

We believe this work will be of interest to several audiences:

																																																																																																															
†A. P. Sward (andrewsward@augustana.edu) is Assistant Professor of Applied Mathematics at Augustana College, IL

‡I. Vecna (ivyvecna15@augustana.edu) is an undergraduate researcher at Augustana College, IL
§F. Stonedahl (forreststonedahl@augustana.edu) is Assistant Professor of Computer Science at Augustana College, IL

*Augustana College Cryptocurrency Analytics Lab: 1Data2DYNE9ajurrnDmqZ8xNU1GzXsa9E9

LEDGER VOL 3 (2018) 1−23
	

ledgerjournal.org

	
ISSN 2379-5980 (online)

DOI 10.5915/LEDGER.2018.101	
	
	

2

(1) For those who wish to store data in the Blockchain, we identify which methods
optimize data storage (and minimize the associated cost) given the constraints of
the protocol.

(2) For those who are concerned that the Blockchain is being “co-opted” for data
publication/storage, we provide a clear outline of the presently-available methods
and explain which methods mitigate negative side effects for other users.

(3) For future digital archeologists, we provide a valuable point of reference that may
allow posterity to unearth virtual artifacts that otherwise might remain hidden
forever in the Blockchain in binary format.5

2. Related Work

It is common knowledge that extrinsic data can be stored in the Blockchain, and there are
numerous websites that provide access to a subset of that data,6,7,8 and some excellent
sleuthing has uncovered a variety of interesting historical artifacts that have previously been
stored.9 Nevertheless, there remains confusion and misinformation about the variety of
different methods by which data can be (and has been) stored. For instance, a recent
comprehensive textbook on Bitcoin included the following:

“There’s no good way to prevent people from writing arbitrary data into the
Bitcoin block chain [sic]. One possible countermeasure is to only accept Pay-
to-Script-Hash transactions. This would make it a bit more expensive to write
in arbitrary data, but it still wouldn’t prevent it.”10

The first claim, that one cannot prevent arbitrary data insertion, is correct, since there is no

general way to distinguish between legitimate address hashes and arbitrary binary data.
However, the second claim is false, as P2SH (Pay-to-Script-Hash) transactions actually
provide the least expensive and most efficient methods for storing large amounts of arbitrary
data (see section 5).

There are also a variety of websites that provide user-friendly tools to publish data of
one’s choice. 11 , 12 However, these tools are currently using the Pay-to-Fake-Key-Hash
(P2FKH) method, which has serious drawbacks (discussed in section 4.2) that make it
inefficient for users of the service and harmful to the Bitcoin infrastructure.

While some previous works have analyzed the graph structure and anonymity of Bitcoin’s
transaction ledger,13, 14 there is a dearth of academic work studying the publication and storage
of arbitrary data, with only a few notable exceptions. In 2015, apparently unaware that Bitcoin
users were already embedding arbitrary (ASCII and binary) data into Blockchain transactions,
Sleiman et al.naively proposed a protocol and developed software for including text messages
in the Blockchain by using the transaction currency amount field to encode data.15 The result
was a highly inefficient publication mechanism that could only store up to 8 lowercase
English letters per transaction output. More recently, Bartoletti and Pompianu analyzed the
metadata attached to transactions that use one specific data insertion method (OP_RETURN, see
section 4.5) to build protocol layers on top of the Bitcoin protocol (e.g., for asset management,
notarization, etc...). 16 In a different vein, Permacoin proposed the idea of building an
alternative to Bitcoin that uses “proof-of-retrievability” rather than proof-of-work, which

LEDGER VOL 3 (2018) 1−23
	

ledgerjournal.org

	
ISSN 2379-5980 (online)

DOI 10.5915/LEDGER.2018.101	
	
	

3

would (by design) allow for the storage of massive amounts of arbitrary data, extrinsic to the
transaction ledger.17

3. Background: The Bitcoin Script Language

3.1. Standard Scripts—Bitcoin’s stack-based scripting language for creating transactions is

simply called “Script.” Bitcoin transactions contain input scripts and output scripts. The input
scripts are solutions (unlocking scripts) to previous output scripts (locking scripts) in prior
transactions stored in the Blockchain.18 There are currently 5 standard script types that are
used and accepted on the Bitcoin network for transactions.19, 20 The standard script types
include Pay-to-Public-Key (P2PK), Pay-to-Public-Key-Hash (P2PKH), Multi-Signature, Pay-
to-Script-Hash (P2SH), and OP_RETURN (see Appendix B for the Script formats). Sections 4
and 5 will demonstrate how each of these script types can be used to store arbitrary data in
Bitcoin’s blockchain.

3.2. Methods—For analysis of historical methods and testing each of the data insertion
methods in this paper, we used the open-source Java library, BitcoinJ.21With this tool we
iterated through the Blockchain and searched for scripts that do not fit the standard script
types, as well as specific script formats. We also used BitcoinJ to build scripts to use in our
own transactions, and we tested these by broadcasting them to the Bitcoin network (through
Blockchain.info).22 Example code for iterating through the Blockchain and building scripts
can be found in Appendix D.

3.3. Technical Limitations on Scripts and Transactions—At the time of writing, a
standard Bitcoin transaction is limited to 100 KB, each input script is limited to 1650 bytes,23
and any single element being pushed onto the execution stack is limited to 520 bytes. After
script execution, the stack must contain exactly one non-false element.24 Input scripts may not
contain any OP codes other than OP_PUSHDATA (except within the special Redeem Script
portion of a P2SH). The minimum output value (min non-dust – see definition in Appendix A)
for a P2PKH is currently 546 satoshis. Transactions that deviate from these rules are
considered non-standard and will not be picked up by most miners.25

3.4. Standard Script Enforcement—Most of the above restrictions on scripts are enforced
by a method in the Bitcoin Core source code called isStandard().26 These limitations were
imposed in the Bitcoin Core client for a variety of reasons, including performance
considerations and preventing an issue known as transaction malleability (see section 6.2).
However, this severely restricts the input and output scripts that one can write. An input script
that spends a P2SH transaction is the only place that affords some flexibility in the use of the
Bitcoin Script language. This flexibility allows more complex logical operations for financial
transactions, and it also allows the greatest variety of data insertion mechanisms. We will first
explain each of the four simpler non-P2SH methods (section 4) then explain the more
sophisticated P2SH-based methods (section 5).

4. Data Insertion Methods Not Involving P2SH

4.1. Coinbase—The coinbase data is the content of the input of a generation transaction.

The coinbase data is arbitrary and can be up to 100 bytes in size.27, 28 The coinbase data has

LEDGER VOL 3 (2018) 1−23
	

ledgerjournal.org

	
ISSN 2379-5980 (online)

DOI 10.5915/LEDGER.2018.101	
	
	

4

been left to the discretion of the miners and has typically been a field where miners insert
ASCII encoded strings declaring the name of their mining pool, or other short messages. The
coinbase data is also used by miners to signal support for various proposed changes to the
Bitcoin protocol. Some, if not all, of the coinbase data may be commandeered by developers
in future versions of the Bitcoin protocol. While this field is a way of storing arbitrary data in
the Blockchain, it is available only to miners and not general Bitcoin users; it is therefore
included in this paper for thoroughness, but will not be mentioned again.

4.2. P2FKH—A very common and controversial data insertion method utilizes the
standard Pay-to-Public-Key-Hash script, storing the data in the <PubKeyHash> field of the
output script along with a non-dust amount of Bitcoin to “burn.” We refer to this as Pay-to-
Fake-Key-Hash (P2FKH). The user does not have a public key that would hash to the data
they are storing; because of this, these transaction outputs can never be spent. However,
because they are valid Unspent Transaction Outputs (UTXOs – see Appendix A) and the
miners have no way of knowing whether the hash corresponds to a real public key that
someone possesses, the miners must keep track of these UTXOs (forever). The storage
afforded by the P2FKH method is 20 bytes per output, but many outputs can be included in a
single transaction. This method has been used to store text,29 images (see Fig. 1), and mp3
files in Bitcoin’s blockchain30 and is currently the method employed by tools like Apertus.io.11

Fig. 1. This JPEG image of Nelson Mandela was stored on 7 December 2013 as P2FKHs
spread across multiple transactions, within block 273,536. Size: 14,400 bytes.31

4.3. P2FK—Data can also be stored as a fake public key (P2FK), instead of a fake public

key hash. An uncompressed public key is 65 bytes,32 and the overall script has 3 fewer OP
codes, making this a much more efficient method for data storage than P2FKH. However, it
does not seem to be in prevalent use by the community as a method for storing data. One
possible reason for this is that it would be relatively easy for nodes to detect fake
(uncompressed) public keys and the Bitcoin developers (or miners) could shut down this
approach in the future.33 Storing data using a fake compressed public key (33 bytes) could
work around this, and would still provide more data efficiency than P2FKH. However, this
method also suffers from the problem of creating unspendable UTXOs.

4.4. Concerns caused by fake addresses—Both the popular P2FKH and the P2FK methods
are problematic for several reasons:

(1) Their storage methods are inefficient, incurring greater overhead (particularly
P2FKH) and more UTXOs than necessary.

(2) The miners must permanently track each unspendable UTXO created this way.

LEDGER VOL 3 (2018) 1−23
	

ledgerjournal.org

	
ISSN 2379-5980 (online)

DOI 10.5915/LEDGER.2018.101	
	
	

5

(3) These methods irretrievably “burn” Bitcoin. P2FKH and P2FK both require the
user to send a small amount of Bitcoin (greater than or equal to the min non-dust
value) to each fake address.

(4) Storing arbitrary data in the Blockchain will create “bloat” to the overall ledger
size.

The first three problems can be addressed by using improved data storage methods. The fourth
objection will apply to any data insertion method, and the Blockchain is destined to grow
larger as long as blocks are mined and transactions are occurring, regardless of what the
transactions themselves actually represent. Whether the value of the data being stored is a
worthwhile use of the Bitcoin network’s resources is a point the community will continue to
debate. Regardless of the data storage use case, Bitcoin will face scalability issues, which
developers are already attempting to address (e.g., segwit,34 Peter Todd’s Merkle Mountain
Range proposal to use commitments to obviate the need to store the full UTXO set 35).

Table 1. BTC (Ƀ) burned storing ASCII in P2FKH transactions

ASCII Character Threshold Amount Burned Via P2FKH Amount of ASCII Data Stored UTXOs
18 118.96Ƀ 2.59 MB 129,410
19 62.77Ƀ 2.58 MB 129,004
20 62.54Ƀ 2.57 MB 128,521

Table 1 shows an estimated amount of Bitcoin that has been burned to fake mostly-text

addresses using the P2FKH method, as of 7 June 2017. Specifically, we aggregated the
balances for all P2PKH UTXOs for which the address has never been used as an input script,
and the key hash contains 18 (or more) consecutive bytes from the set of printable ASCII
characters, plus tabs, newlines, and null (‘\x00’) characters that may have been used as
padding around textual data.36

4.5. OP_RETURN—The OP_RETURN standard script was added as a response to the
increasing numbers of users using P2FKH to store data (or metadata) in
transactions.37OP_RETURN allows a small amount of data to be included in each transaction,
creating a provably unspendable UTXO that the miners do not need to track, and that does not
require a non-dust burn value.

There can be many outputs in a single Bitcoin transaction, but only one of these can be an
OP_RETURN in a standard transaction.38 OP_RETURN can currently only store 80 bytes per
transaction. This limit has fluctuated over time (see Bartoletti and Pompianu for a discussion
about the history of OP_RETURN16). To use more than one OP_RETURN multiple transactions are
required.39 The order in which these transactions are mined by the decentralized Bitcoin
network is difficult to control. Overall this method is appropriate for inserting small amounts
of data (or transaction metadata), but it is not suitable for large quantities of data. Some
community members have also expressed concern about the robustness of storing data using
OP_RETURN, since provably unspendable UTXOs can be pruned by nodes, and may not be
permanently stored/distributed by as many nodes.40

4.6. P2FMS—Another data insertion method (Pay-to-Fake-Multisig) that commonly
appears in the Blockchain is a 1-of-2 or 1-of-3 multisig script,41 with one real public key, and
1 or 2 fake keys containing arbitrary data.42 Because these transactions are spendable, a user
can avoid creating UTXO bloat. For the lowest overhead cost, one would use a (real)

LEDGER VOL 3 (2018) 1−23
	

ledgerjournal.org

	
ISSN 2379-5980 (online)

DOI 10.5915/LEDGER.2018.101	
	
	

6

compressed public key, and store the data using two fake uncompressed public keys (65 bytes
each). This method would keep the data in the UTXO set only until the user decides to spend
these outputs (using the one real key). Multiple P2FMS outputs can be stored within a single
transaction, consistently using the same real public key in all of them, making data
reconstruction straightforward.

However, transactions containing a single OP_CHECKMULTISIG must be larger than 400
bytes; specifically, the default requirement is 20 bytes per sigop,43 and one instance of
OP_CHECKMULTISIG counts as 20 sigops.44 This limitation makes redemption of these UTXOs
uneconomical: the cost in fees for spending these UTXOs will be greater than the min non-
dust values that would typically be sent to them.45 Therefore, users with no regard for the
UTXO bloat can simply use all 3 pubkey fields to store arbitrary data with a burn amount.

5. Data Insertion Methods Using P2SH

5.1. P2FSH—Similar to P2FKH, the Pay-to-Fake-Script-Hash (P2FSH) method simply

stores data as a fake hash. P2FSH requires two fewer OP codes than P2FKH (making it
slightly more efficient) but still creates an unspendable UTXO. The remainder of section 5 is
dedicated to methods that store data in the input script that spends a P2SH output, rather than
in the output script.

5.2. Two Stages of P2SH Transactions—There are two stages of P2SH: creating the
UTXO and spending the UTXO. To create a P2SH UTXO, the user first creates a Redeem
Script, and then applies the HASH160 algorithm to this script.46 The output script is then:

OP_HASH160 <RedeemScriptHash> OP_EQUAL

To spend this UTXO, the user creates an input script (referencing the UTXO above)

consisting of the Redeem Script itself (as a single stack element, thus limited to 520 bytes)
preceded by a sequence of Script operations that will make the Redeem Script result in only
true after execution.47 There are two approaches to data insertion: either store arbitrary data
inside the Redeem Script itself, and/or store arbitrary data in the portion of the input script that
precedes the Redeem Script. For instance, a user might simply make a Redeem Script that
contains an OP_PUSHDATA2 (3 bytes) followed by a 517-byte data element.48 Since any stack
element other than OP_0 is evaluated as “true,” this script will successfully redeem the UTXO.
However, because of the 520-byte Redeem Script limit, it is more efficient to store large
amounts of data in the portion of the input script that precedes the Redeem Script (see Fig. 6
for a visual representation). We will next discuss such methods (see Appendix C for the full
scripts). Variations of the following P2SH-based methods have been used to store data in the
Blockchain since June 2014.49

5.3. Data Drop Method—The Data Drop method pushes data onto the stack and drops it
off the stack during script execution, typically with the use of the OP DROP operation.
Consider the following Redeem Script: OP_DROP ... OP_DROP <PubKey> OP_CHECKSIG.50
The preceding input script operations are then <Sig> <Data>...<Data>. The stored data
must be split into chunks of at most size 520 bytes each. The signature is 71-73 bytes and the
Redeem Script is 37 bytes, which leaves 1529 bytes for arbitrary data after accounting for the
pushdata OP codes. Recall the input script is constrained by the input size limit of 1650 bytes

LEDGER VOL 3 (2018) 1−23
	

ledgerjournal.org

	
ISSN 2379-5980 (online)

DOI 10.5915/LEDGER.2018.101	
	
	

7

(see section 3.3), but these inputs can be chained together within a single transaction (up to the
100 KB TX size limit) to store large amounts of data in a nearly contiguous and easy-to-
reconstruct format (more about reconstruction in section 8). This method has been used to
store relatively large image files within a single transaction in the Blockchain (see Fig. 2).

We include a compressed <PubKey> as part of the Redeem Script to ensure that the
Redeem Script hashes to something new each time this method is used with a new key, and
the use of a signature (<Sig> ... OP_CHECKSIG) prevents a double-spend attack (see section
6.1). The data insertion method that provides the lowest known overhead (and publication
cost) is a variant of this (Data Drop w/o Sig) that eschews the use of signatures and keys in
order to pack more data into each transaction input, at the cost of potential adversarial
tampering. However, even using signatures, an adversary could perform an online attack to
tamper with data stored using the Data Drop method (see section 6.2). The trade-off between
maximizing storage capacity and ensuring transaction security and data integrity is discussed
further below.

Fig. 2. JPEG image of Mr. Burns stored (without any burns) in a single transaction on 5
April 2017 using the Data Drop w/ Sig method (multiple P2SH inputs with a Redeem
Script of OP_DROPs). Size: 34,600 bytes.51

5.4. Data Hash Method—The Data Hash method is a more sophisticated method for

inserting data in the Blockchain.52 The largest input script in Blockchain history is an example
of this script type; this transaction was included on 27 November 2014, by an unknown
author.53, 54 This transaction included a parody of a Western Union advertisement (see Fig. 3).
Similar to the Data Drop method, the input script preceding the Redeem Script contains
repeated chunks of <Data>...<Data>. The Redeem Script is of the form:

OP_HASH160 <DataElementHash> OP_EQUALVERIFY

These three commands are then repeated for each data element that is pushed onto the stack by
the input script. Rather than merely dropping each data element off the stack, this script uses
hashes to verify that each chunk of data has not been tampered with. Since the hashes are
stored in the Redeem Script, and the hash of the Redeem Script was recorded in the first stage
UTXO, no other data can be substituted into the input script that spends this UTXO, even if
the inputs for this transaction were not signed. However, signing each input (by inserting

LEDGER VOL 3 (2018) 1−23
	

ledgerjournal.org

	
ISSN 2379-5980 (online)

DOI 10.5915/LEDGER.2018.101	
	
	

8

<Sig> at the beginning of the input script and <PubKey> OP_CHECKSIG at the end of the
Redeem Script) is still necessary to prevent an adversary from potentially reordering the
inputs, or including a subset of the inputs, in a competing transaction. These security concerns
are further discussed in the next section.

Fig. 3. This JPEG image is stored in Bitcoin’s blockchain as a GZIP archive file inside
one input script of a P2SH output. (Compressed) size: 9,265 bytes. This input script is the
largest input script present in the Blockchain to date.55

6. Security and Data Integrity

6.1. Sniping UTXOs—We refer to sniping as the process of re-appropriating a transaction’s

unsigned inputs to a new transaction with different outputs (created by the sniper and
broadcast simultaneously) to hijack the funds those inputs represent.56 Only one of these
double-spend attempts may be included in the Blockchain. Signatures are designed to protect
against sniping because they prohibit adversaries from making any changes to the signed
portion of the transaction (to do so would require generating a new valid signature, which the
adversary cannot do without the user’s private key). However, when a user creates a signature
for an input script, the output scripts are secured, but not the input scripts.57
 Redeem Scripts that do not require a signature are thus vulnerable. If such a script is used
multiple times, it may become associated with its hash, and UTXOs that use this hash may be
spent by anyone who provides the corresponding Redeem Script. One could include a unique
element in the Redeem Script so that the hash (of the Redeem Script) is different with each
use.58 These transactions, however, could still be sniped in real-time by sophisticated bots.

6.2. Transaction Malleability—We define transaction malleability to mean any change to a
transaction that is broadcast (prior to block acceptance). Transaction malleability is a problem
that has plagued Bitcoin for years, and has been addressed in a variety of ways by the Bitcoin
Core development team. The threat to normal users is now rarely more than an annoyance but
for data publishers, it is a potentially severe problem that warrants discussion.59

When a new transaction is broadcast to the P2P Bitcoin network, it gets passed from node
to node, with nodes verifying it and storing it into the mempool of possible transactions to
include in a block. An adversarial node may receive a transaction and create a modified
version of this transaction to pass along to others in the network. These changes may be as
innocuous as changing a PUSHDATA OP code,60 but a more detrimental change could be to

LEDGER VOL 3 (2018) 1−23
	

ledgerjournal.org

	
ISSN 2379-5980 (online)

DOI 10.5915/LEDGER.2018.101	
	
	

9

alter the arbitrary data stored using the Data Drop method. As long as the scripts themselves
still result in valid execution, the modified transaction will have a new transaction ID and
could be included in the Blockchain in this modified form. No “functional” transaction data
has been changed: the inputs and outputs are still accounted for correctly.

Since the Data Drop with signatures method prevents sniping, it does not currently appear
to be a target for malicious agents.61 However, the DataDrop method includes no measures to
prevent an agent on the network from modifying the arbitrary data a user is trying to store,
even if each input is signed. In contrast, the Data Hash method ensures data integrity because
the hash of each data element is checked during execution of the Redeem Script. While a Data
Hash transaction that does not contain a signature could be easily sniped, the sniper would still
have to include the exact unmodified data as input. However for data spanning multiple
(unsigned) inputs, a sniper could rearrange the inputs, or only spend some of the inputs and
not others, causing the data to be stored in the Blockchain in an unintended order. Adversaries
motivated by mere financial gain can be discouraged by assigning only the min non-dust
Bitcoin value for each (unsigned) P2SH input, making the sniper effectively pay more in fees
(to store your desired data) than they would recoup from redirecting the output to their own
address.62 Thus, the only method guaranteed to preserve data integrity when using multiple
outputs is Data Hash with signatures.

None of the simpler data insertion methods (P2FKH, P2FK, P2FMS, P2FSH,
OP_RETURN) suffer from malleability or sniping concerns, since the data is stored within
signed outputs.63

Table 2. P2SH-based Data Insertion Method Summary (Single Input)

Method SigScript* RedeemScript* Max Data Integrity Snipeable
Data Drop
(w/o sig)

<Data> OP_DROP... 1630 No Yes

Data Drop
(w/ sig)

<Sig><Data> OP_DROP...

OP_CHECKSIG

1529 No No

Data Hash
(w/o sig)

<Data> OP_HASH <DataHash>

OP_EQV...

1560 Yes** Yes**

Data Hash
(w/ sig)

<Sig><Data> OP_HASH <DataHash>

OP_EQV...

OP_CHECKSIG

1461 Yes No

* See Appendix C for the full scripts used for these calculations.

** If sniped, multiple inputs within the transaction can be reordered, even though the data within each input cannot be changed.

Table 2 summarizes the two P2SH-based methods with and without signatures in terms of

security and data capacity. Although the Data Hash w/ Sig method provides the least data
capacity of these methods, the benefit of guaranteed data integrity likely outweighs the loss of
efficiency.

LEDGER VOL 3 (2018) 1−23
	

ledgerjournal.org

	
ISSN 2379-5980 (online)

DOI 10.5915/LEDGER.2018.101	
	
	

10

7. Efficiency Comparison and Costs

First, regarding efficiency concerns about bloating the UTXO set using fake addresses in
UTXOs (as discussed in section 4.4), which impacts the scalability of the Bitcoin ecosystem:

• P2FKH and P2FSH are both extremely wasteful, providing only 20 bytes of data per
unspendable UTXO.

• P2FK is also quite wasteful, although using uncompressed keys currently affords 65
bytes of data per unspendable UTXO.64

• The currently allowed form of P2FMS (with all 3 addresses fake) could store as much
as 195 bytes (using 3 uncompressed keys) per unspendable UTXO. Versions of
P2FMS with 1 real key are spendable, but there is currently no economic benefit to
retrieve min non-dust values.

• OP_RETURN does not bloat the UTXO set, since it is provably unspendable and
nodes may prune it.

• Both forms of the P2SH-based methods that store the data in input scripts (Data Drop
and Data Hash) do not increase the UTXO set at all, since all created TXOs get
redeemed.

Next, we consider two additional measures of efficiency:

(1) The total amount of data (i.e. including overhead) that is required to be added to the

Blockchain in order to store a specified amount of arbitrary data (shown in Fig. 4 and
Table 3). This relates to scalability issues, and will be of interest to those concerned
with storing full copies of the Blockchain.

(2) The total cost in satoshis, using current minimal (20 satoshis/byte) fee and min non-
dust burn rates necessary for a transaction to be accepted, for storing a specified
amount of arbitrary data (shown in Fig. 5 and Table 3).65 This measure is of interest to
those who wish to store data in the Blockchain inexpensively.

Table 3. Method Summary (Max Size and Cost) for a Fee of 20 Satoshi/byte

* Data in Bytes **Cost in Bitcoin

*** Efficiency in Satoshi per Byte of arbitrary data stored

Method Stored in UTXO Set? Max Data Per TX* Total Cost ** Data Eff. Cost Eff.***
PF2KH Yes 58,680 .03601624 58.7% 61.30
PF2K Yes 85,280 .02715132 85.3% 31.80
OP_RETURN Prunable 80 .00006340 25.2% 79.25
P2FMS Yes 92,624 .02522220 92.6% 27.23
P2FSH Yes 62,340 .03701302 62.3% 59.37
Data drop
(w/o Sig)

No 96,060 .02042260 94.1% 21.26

Data Drop
(w/ Sig)

No 90,099 .02042260 88.2% 22.66

Data Hash
(w/o Sig)

No 92,507 .02042900 90.5% 22.08

Data Hash
(w/ Sig)

No 86,087 .02042260 84.3% 23.72

LEDGER VOL 3 (2018) 1−23
	

ledgerjournal.org

	
ISSN 2379-5980 (online)

DOI 10.5915/LEDGER.2018.101	
	
	

11

As Fig. 4 and Fig. 5 show, OP_RETURN is the most efficient choice for storing small

amounts of data (up to 80 bytes). For medium amounts of data (between 80 and 800 bytes),
P2FMS is the most cost-effective option, and it provides the least data overhead up to ≈ 10
KB. For large amounts of data (beyond 800 bytes), the Data Drop w/o Sig method provides
the least expensive option, and it requires the least data overhead beyond 10 KB. The P2SH-
based methods that store data in the input script (Data Drop and Data Hash) have a higher
fixed overhead (due to needing an initial transaction to set up the UTXOs that the second
transaction redeems), but offer competitive levels of data overhead compared to P2FK and
P2FMS for larger amounts of data at much lower costs (since they avoid the burn costs for
each UTXO).
Example: for a 50 KB file, the most cost-effective secure method (Data Hash w/ Sig) costs
approximately 0.012	Ƀ , which is a 61% savings compared to P2FKH (≈ 0.03	Ƀ). At current
exchange rates (1 BTC ≈ 2500 USD), this would cost about $30 to publish in the Blockchain.

8. Data Reconstruction

8.1. Methods Involving Burns—All methods relying on fake keys and/or hashes are

cumbersome to reconstruct. For P2FKH, each output contains 20 bytes of data to be retrieved,
and many ordered outputs can be used to store a contiguous data set. To reconstruct the data,
extract the data from the key or hash in each output script.66 One must be careful to avoid any
P2PKH outputs in the transaction that represent “change” addresses; the data outputs are
typically marked by their min non-dust values. There does not seem to be a defined limit on
the number of outputs a transaction can have.67 Under the 100 KB size limit, P2FKH has a
maximum storage size of 58,680 bytes with a total transaction size of 99,983 bytes. Files
larger than this will have to be split among different transactions, and subsequently linked
together (either within the Blockchain itself or by external information).68 This makes fully
automatic reconstruction of datasets stored in the Blockchain more difficult. For P2FMS,
reconstruction also means avoiding the pushdata OP codes between the fake keys.
8.2. Methods Not Involving Burns—For both Data Drop and Data Hash methods, the data is
stored in the input script in the same way. To reconstruct the data, ignore any signature data if
present, the pushdata OP codes between the data elements, and the Redeem Script itself.
Assuming no malleability concerns, the data will be stored in the same order in which it was
broadcast, within a single transaction (up to 100 KB with overhead), achieving a maximum
file size of 96,060 bytes.69 An OP_RETURN output can be used for metadata, such as the
name of the file, or the TX ID of the next chunk of data for files larger than 100 KB.70 To ease
retrievability, one may include a single P2FKH output that pays to the hash of the data file
being stored, similar to the approach taken by Cryptograffiti.12 This method allows anyone
with this hash to use common blockchain exploration tools to find the transaction where the
data was stored. A figure showing the anatomy of an input script is provided, see Fig. 6.

As a point of reference for reconstruction, consider the following transaction, which
contains a JPEG image stored using the Data Hash w/o Sigs method:

TX ID: 033d185d1a04c4bd6de9bb23985f8c15aa46234206ad29101c31f4b33f1a0e49
Block: 474586

LEDGER VOL 3 (2018) 1−23
	

ledgerjournal.org

	
ISSN 2379-5980 (online)

DOI 10.5915/LEDGER.2018.101	
	
	

12

The Redeem Script data is easily identified as the last data element of each input. The
JPEG data precedes the Redeem Scripts, three data elements at a time. The second-to-last
input contains only two data elements preceding the Redeem Script. The final input does not
contain image data; it is used to pay fees.

Fig. 4. Total data required vs. stored data size, for small (LEFT) and large (RIGHT) data
sizes, up to the maximum size possible within a single transaction.

Fig. 5. Currency cost vs. stored data size for small (LEFT) and large (RIGHT) data sizes,
up to the maximum size possible within a single transaction. This graph assumes a
transaction fee of 20 satoshis/byte and burn values of 1100 satoshis for P2FMS and 546
for other methods requiring burns.

LEDGER VOL 3 (2018) 1−23
	

ledgerjournal.org

	
ISSN 2379-5980 (online)

DOI 10.5915/LEDGER.2018.101	
	
	

13

Fig. 6. The anatomy of a maximally-sized input (holding 1461 bytes of arbitrary data) for
a Data Hash w/ Sig transaction. It consists of the input script (above) and the Redeem
Script (below). The numbers inside the cells label the number of bytes for each field. Red
fields denote OP codes, dark blue fields denote the arbitrary data chunks being inserted
(and the hashes of that data), and the light green fields denote the signature-related data
(omitted for the w/o Sig variant).

9. Conclusion

A comprehensive survey of the benefits and drawbacks of extant methods revealed that there
is no optimal data insertion method that dominates all of the others. Instead, different methods
will be optimal depending on one’s priorities, and the amount of data to store. For small
quantities of data, using OP_RETURN is a solid choice, and is probably also the closest to an
“approved” standard for data publication. For larger amounts of data, if quantity at low cost is
paramount and security is unimportant, the Data Drop w/o Sig method may be the best choice.
Alternatively, the Data Hash w/ Sig method provides a nice balance of data integrity with an
efficient cost function for large data. However, many in the community believe that storing
large quantities of data is not an appropriate use of the Blockchain, and that it should be used
for storing short hashes of documents (i.e. as time-stamped existence proofs) rather than the
full documents themselves. Others in the community take a strong free market stance, and
hold that if users are willing to bear the cost of data insertion, they should be able to use the
technology as they see fit. The purpose of this paper is not to cast value judgments about these
perspectives, but rather to encourage informed discussion about the technical and economic
issues at stake. On a pragmatic level, given Bitcoin exchange rates in recent times, even the
most efficient methods may be prohibitively expensive to publish large files, unless the
insertion of that data has significant/lasting value to the publisher.

It is striking that P2FKH (which appears to be a dominant approach used by several data
publication tools) fares poorly in almost all regards: it creates the most unspendable UTXO
bloat, it requires the largest overhead, and it costs the most.11,12 We have several hypotheses
that may explain its (possibly unwarranted) popularity:

1 33 1 20 1

HASH
 160

PUSH
DATA

EQUAL
VERIFY

PUBKEY DATA 3
HASH

1 1

HASH
 160

PUSH
DATA

20

DATA 2
HASH

1

EQUAL
VERIFY

1 1

HASH
 160

PUSH
DATA

20

DATA 1
HASH

1

EQUAL
VERIFY

1

PUSH
DATA

1

CHECKSIG

1 71-73 3 520 520 421 3 3 2

PUSH
DATA

SIG DATA 2 DATA 3 DATA 1 PUSH
DATA

PUSH
DATA

PUSH
DATA

PUSH
DATA

Input Script

Redeem Script

LEDGER VOL 3 (2018) 1−23
	

ledgerjournal.org

	
ISSN 2379-5980 (online)

DOI 10.5915/LEDGER.2018.101	
	
	

14

(1) It is one of the simplest to implement.71
(2) Most people are unaware that more sophisticated approaches (like using input-
scripts to store data) exist.72
(3) Tool-makers are concerned that more complex methods may be banned in future
versions of Bitcoin, which would break compatibility.
(4) Users are concerned that any data that does not create unspendable UTXOs will
not be sufficiently permanent, as it may end up being pruned in the future.

This last hypothesis is the most interesting one. On the one hand, as long as Bitcoin

survives, surely some nodes will always keep the full and complete ledger (including input
scripts), in order to have a complete archive of past transactions, and to be able to verify the
hashes of all blocks from the beginning. On the other hand, UTXOs themselves may not be
immune to pruning, as the future might bring the possibility of using cryptographic data
structures with commitments to store the status of UTXOs without storing the UTXO data
directly.35 However, this would likely serve as a caching optimization for miners/nodes, and
the full record including very old UTXOs would still be archived on disk.

As a final caveat, we have attempted to provide a comprehensive review of the major
current and past data insertion techniques, but the knowledge and methods contained in this
article are based on a scripting protocol that is subject to continual change, and thus some of
the methods discussed may become unavailable in the future. For instance, the impact of the
Segregated Witness (segwit) BIP on the feasibility of long-term data storage using input
scripts is an important question for future testing and research.34 However, even if future
changes to the Bitcoin Core disable or enable new features relating to data storage, there is
important academic value in documenting the methods that have been used to date.
Knowledge of these methods will be useful for historical research, and may form the building
blocks of future methods of data publication for Bitcoin, as well as other cryptocurrencies.

Acknowledgement

We would like to thank members of the Bitcoin Core development team for responding
promptly to our questions. We also thank Daniel Zwiener for some interesting conversations.
This research was funded by the Augustana New Faculty Research grant program.

Author Contributions

APS directed the project, wrote the bulk of the initial manuscript, and created tables (37.5%),
IV wrote code to test insertion methods and search the Blockchain for previously stored data
and edited the manuscript (37.5%). FS consulted on technical matters, created graphs, and
refined the manuscript (25%).

LEDGER VOL 3 (2018) 1−23
	

ledgerjournal.org

	
ISSN 2379-5980 (online)

DOI 10.5915/LEDGER.2018.101	
	
	

15

Notes and References
	
1 “The Times 03/Jan/2009 Chancellor on brink of second bailout for banks.” TX ID:
4a5e1e4baab89f3a32518a8831bc87f618f76673e2cc77ab2127b7afdeda33b Block: 0.
2 Nakamoto, S. “Bitcoin: A peer-to-peer electronic cash system.” (2008) Bitcoin.org (accessed July 2017)
https://bitcoin.org/bitcoin.pdf.
3 Be aware that anything published in the Blockchain is publicly available and can be accessed by anyone,
and it cannot be retroactively altered or removed. For this reason, some use cases may want to store
encrypted data or just a hash, rather than plaintext data.
4 Antonopoulos, A. M. Mastering Bitcoin: Unlocking Digital Cryptocurrencies. Sebastopol, CA: O’Reilly
Media 133 (2014).
5 Textual data is fairly easy to recover, regardless of the insertion method, by searching for ASCII-printable
strings, e.g. using the Unix strings command on the .BLK files. However, binary data files (images, sounds,
compressed files, etc.) are difficult to locate without understanding the structure of the transactions and
scripts that were used to store the data.
6 Majakivi, A. (a.k.a. Anduck). Bitcoinstrings.com (accessed July 2017)
https://bitcoinstrings.com/.
7 Coin Sciences Ltd. Coin secrets (beta) (accessed July 2017)
http://coinsecrets.org/.
8 HugPuddle Team. Bitfossil (accessed July 2017)
http://bitfossil.com/.
9 Shirriff, K. “Hidden surprises in the Bitcoin blockchain and how they are stored: Nelson Mandela,
Wikileaks, photos, and Python software.” Ken Shirriff’s blog (accessed July 2017)
http://www.righto.com/2014/02/ascii-bernanke-wikileaks-photographs.html.
10 Narayanan, A., Bonneau, J., Felten, E., Miller, A., Goldfeder, S. Bitcoin and Cryptocurrency
Technologies: A Comprehensive Introduction. Princeton: Princeton University Press 217-218 (2016).
11 HugPuddle Team, embii, The AtomSea. Apertus (accessed July 2017)
http://apertus.io.
12 Erstu, E. (a.k.a. 1Hyena). Cryptograffiti.info v0.90 (accessed July 2017)
http://www.cryptograffiti.info/.
13 Ron, D., Shamir, A. “Quantitative Analysis of the Full Bitcoin Transaction Graph.” In A. Sadeghi (Ed.),
Financial Cryptography and Data Security, 17th International Conference, FC 2013, Okinawa, Japan, April
1-5, 2013, Revised Selected Papers, New York: Springer 6-24 (2013)
https://www.springer.com/us/book/9783642398834.
14 Reid, F., Harrigan, M. “An analysis of anonymity in the bitcoin system.” In Y. Altschuler et al. (Eds.)
Security and Privacy in Social Networks. New York: Springer 197–223 (2013)
http://www.item.ntnu.no/_media/studies/courses/ttm4546/bitcoin_article.p
df.
15 Sleiman, M. D., Lauf, A. P., Yampolskiy, R. “Bitcoin message: Data insertion on a proof-of-work
cryptocurrency system.” In 2015 International Conference on Cyberworlds, IEEE 332–336 (2015)
https://doi.org/10.1109/CW.2015.56.

	

LEDGER VOL 3 (2018) 1−23
	

ledgerjournal.org

	
ISSN 2379-5980 (online)

DOI 10.5915/LEDGER.2018.101	
	
	

16

	
16 Bartoletti, M., Pompianu, L. “An Analysis of Bitcoin OP_RETURN Metadata.” arXiv preprint (2017).
https://arxiv.org/abs/1702.01024.
17 Miller, A., Juels, A., Shi, E., Parno, B., Katz, J. “Permacoin: Repurposing bitcoin work for data
preservation.” In Security and Privacy (SP), 2014 IEEE Symposium on, 475–490 (IEEE, 2014).
18 Technically, transactions may also reference other transactions that have not yet been confirmed in a
block but are residing in the mempool.
19 Antonopoulos, A. M. Mastering Bitcoin: Unlocking Digital Cryptocurrencies. Sebastopol, CA: O’Reilly
Media 128-9 (2014).
20 This has changed over time. Check the current Bitcoin Core client to see what is currently allowed as a
valid transaction script.
21 bitcoinj Java Library (accessed July 2017) https://bitcoinj.github.io/.
22 Blockchain.info (accessed July 2017) https://blockchain.info/.
23 Chosen because it can handle 15 compressed keys for a multisig transaction as a P2SH, as of Bitcoin Core
0.9.3.
24 Bitcoin Core Development Team. “Make Transactions with Extra Data in their ScriptSig’s Non-
Standard.” commit message (2012)
https://github.com/bitcoin/bitcoin/commit/39f0d9686095
bce469dbfa52333331a5d15c6545.
25 This list of rules is not comprehensive and is subject to change over time. We list only the rules that
directly affect data storage methods discussed in this manuscript.
26 Ironically, due to Bitcoin’s decentralized approach, the isStandard method is anything but standard, as
miners and nodes on the Bitcoin network can adhere to all, some, or none of these “standard” script
restrictions, or even create their own standards to enforce. Moreover, recently the isStandard method has
been explicitly moved to a configuration file to be more easily modifiable by users. This means that
innocuous-looking scripts that could result in valid execution may never be propagated by a large portion of
the network while other strange-looking scripts might be propagated without issue.
27 BIP 34 adds height as the first item in the coinbase:
https://github.com/bitcoin/bips/blob/master/bip-0034.mediawiki.
28 Antonopoulos, A. M. Mastering Bitcoin: Unlocking Digital Cryptocurrencies. Sebastopol, CA: O’Reilly
Media 187-8 (2014).
29 TX ID: 930a2114cdaa86e1fac46d15c74e81c09eee1d4150ff9d48e76cb0697d8e1d72 Block: 138725.
30 An MP3 of Spock saying: “Live long and prosper,” spread across multiple transactions inside of block
number 345858.
31 There is some extra data in the first and last transaction that is not essential to reconstruct the image.
32 The OP code for pushing 65 bytes is 41 which corresponds to ‘A’ in ASCII, and thus if this method is
used for text publication, the first byte should probably be reserved for a newline (or other non-printable
ASCII character) so that the popular text extraction scripts do not extract the extraneous ‘A’ as part of your
text.
33 Nodes could check the x and y coordinates of the public key to ensure they are valid points on the elliptic
curve.

	

LEDGER VOL 3 (2018) 1−23
	

ledgerjournal.org

	
ISSN 2379-5980 (online)

DOI 10.5915/LEDGER.2018.101	
	
	

17

	
34 Segregated Witness (segwit) Bitcoin Improvement Proposal.
https://github.com/bitcoin/bips/ blob/master/bip-0141.mediawiki.
35 Todd, P. “Making UTXO set growth irrelevant with low-latency delayed txo commitments”
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2016-
May/012715.html.
36 This table overstates the value of BTC burned to store textual data, since a significant portion (≈ 58 BTC)
was paid to the known burn address of all 0s, which likely relates to some proof-of-burn mechanics rather
than data storage. However, the table also underestimates both the value burned and the number of
transactions that store all data, since binary data (JPEG images, MP3 files, etc.), which tends to be much
larger than text, is not accounted for. As of July 2017, there were approximately 52 million total UTXOs
(see Lopp, J. “Unspent transaction output set graph,” Statoshi dashboard (Accessed July 2017)
http://statoshi.info/dashboard/db/unspent-transaction-output-set), meaning
that unspendable ASCII/whitespace/null P2FKH UTXOs comprise about 0.25%. Obtaining an exact
accounting of unspendable UTXOs (that store data) is impossible, since arbitrary binary data (especially
compressed/encrypted data) can be indistinguishable from legitimate hashes.
37 Antonopoulos, A. M. Mastering Bitcoin: Unlocking Digital Cryptocurrencies. Sebastopol, CA: O’Reilly
Media 133 (2014).
38 https://github.com/bitcoin/bitcoin/blob/1ad3d4e1261f4a444d982
a1470c257c78233bda3/src/policy/policy.cpp#L152.
39 Using more transactions necessitates more inputs and possibly outputs, increasing fees.
40 See comments in: https://github.com/bitcoin/bitcoin/issues/8079.
41 More than 3 public keys in a “bare” multisig output script are marked non-standard; higher (e.g. 1-of-12)
multisigs are generally done using P2SH.
42 TX ID: a1e537ac06869cf63845ee1fc1a267c5b3bd1db3ac36e6a21fa4ffe20a941b2a Block: 351746.
43 https://github.com/bitcoin/bitcoin/issues/8079.
44 https://gist.github.com/gavinandresen/4135d03a56e0ecd146c7.
45 Even assuming a very low 5 satoshi/byte fee and TX size of 400, a 2000 satoshi fee is nearly quadruple
the size of the current min non-dust value.
46 HASH160 is a shorthand for RIPEMD(SHA256(Redeem Script)).
47 BIP 62 requires that the stack contain precisely one non-false value after script execution.
48 TX ID: afe9034d3afb9d7d8db064b7944d42b30d650d333819cdbe0132ed71febb9725 Block: 475205.
49 TX ID: d771f31ad04904564da77c1106cde85d06cd641cf2977ffa36f0dd03e89eef4f Block: 307594.
50 For utmost efficiency, OP_2DROP should be used to drop two data elements from the stack at a time.
51 TX ID: 94e319d09fc236fb9d7a24e60af8f47ed41ca3cc01e9950c925d806153ed8aa3 Block: 460435.
52 Sometimes colloquially referred to as the “Western Union” or “WU” method. See Fig. 3.
53 TX ID: 200f3f6f8a91ae438d1924e5cedca98cea7f0197b9eba11343948b5621ca19ed Block Number:
331804.

	

LEDGER VOL 3 (2018) 1−23
	

ledgerjournal.org

	
ISSN 2379-5980 (online)

DOI 10.5915/LEDGER.2018.101	
	
	

18

	
54 This script format resembles the approach used to store textual data in Peter Todd’s publish-text.py (see
above, n.58), but Todd denied authorship of this transaction, which predates the publication of his Python
script by about 5 months.
55 Likely to remain so, given the current limit on the size of inputs is now only 1650 bytes.
56 This behavior has been observed in the wild.
57 The signature is based on a modified copy of the transaction with empty input scripts. See
https://en.bitcoin.it/wiki/OP_CHECKSIG for details.
58 Todd, P. publish-text.py (accessed July 2017) https://github.com/petertodd/python-
bitcoinlib/blob/master/examples/publish-text.py.
59 A user’s transaction may be modified in a minor way that does not affect the transaction’s functionality
but does alter the TX hash, which can make it more difficult for wallet software to track its status.
60 Shirriff, K. “Bitcoin transaction malleability: looking at the bytes.” Ken Shirriff’s blog (accessed July
2017) http://www.righto.com/2014/02/bitcoin-transaction-malleability.html.
61 However, this could change if adoption becomes widespread and/or if transaction malleability continues
to be a problem in the future.
62 Note: an adversary may have much stronger motives for mangling the data publication, depending on the
data in question. Also, automated sniping scripts may be programmed to act in an economically rational
way, but it seems risky to count on this.
63 Technically, the standard malleability concerns apply regarding altering TX IDs via nonfunctional
changes, but the signature protects the integrity of data fields within output scripts.
64 Although note that if future versions of Bitcoin choose to crack down on data storage using this
mechanism, it would be necessary to format your data as a “valid” compressed public key (33 bytes long,
starting with 02 or 03).
65 Fees vary as a result of competition between transactions within the mempool. A transaction fee of 20
satoshis/byte currently appears sufficient to ensure the transaction is included in a block eventually, although
in times of heavy traffic it could take a long time (we have witnessed wait times of up to one week with this
fee rate). Higher fees increase your transaction’s priority, which could be necessary for publication of time-
sensitive data.
66 Do not confuse the PubKeyHash (as bytes of data) with the Base58Check encoded Bitcoin Address.
67 The largest number of outputs within a single transaction in the Blockchain we found is 13,107. TX ID:
dd9f6bbf80ab36b722ca95d93268667a3ea6938288e0d4cf0e7d2e28a7a91ab3 Block: 391204.
This transaction exceeds the 100 KB transaction size limit currently imposed by isStandard.
68 Multiple transactions all broadcast simultaneously could end up inside a block in any order, or be
separated by blocks.
69 63.7% more data than P2FKH.
70 Beware of malleability issues, even a change of a single pushdata OP code will change the TX ID.
71 In fact, it can be used to store small amounts of text using any standard wallet software, with a relatively
simple conversion to convert ASCII data into a Bitcoin address.
72 We hope this paper will help to remedy this.

	

LEDGER VOL 3 (2018) 1−23
	

ledgerjournal.org

	
ISSN 2379-5980 (online)

DOI 10.5915/LEDGER.2018.101	
	
	

19

	
Appendix A: List of common terms

We list some common definitions and abbreviations used in the paper.

• Dust: If the fees to spend a transaction output (determined from the size of the output
and the input required to spend it) would cost more than one third the value of that
output, the output value is considered dust. Transactions with dust output values are
considered non-standard.

• Min Non-Dust: The minimum non-dust value is the least value one can send without
the output being flagged as dust. The minimum output value for a P2PKH is currently
546 satoshis. This minimum threshold value changes depending on the script being
used.

• Provably Unspendable: An OP_RETURN UTXO is provably unspendable, meaning
that the Bitcoin protocol has marked it as impossible to spend. Thus, it does not need
to be included in the set of UTXOs that may be spent in the future. In contrast, some
transaction outputs are effectively unspendable because their scripts have no known
solution. Spending a P2FKH output would require generating a private key that
corresponded to that public key, which is astronomically improbable, but does not
render the UTXO provably unspendable.

• Redeem Script: A script that is hashed, and this hash is used as the output of a Pay-
to-Script-Hash transaction. The Redeem Script and any inputs it takes are supplied
when a user wishes to spend the output that was created. These inputs and the Redeem
Script itself are executed and must return true in order for the transaction to be valid.

• Snipeable: In this paper, sniping refers to the process of re-appropriating the unsigned
inputs of an unconfirmed transaction by creating a new transaction with different
outputs to hijack the funds those inputs represent. If a transaction has unsecured inputs
that can be re-appropriated, it is snipeable.

• Transaction Malleability: Transaction malleability refers to the ability to change any
part of a transaction without invalidating that transaction. Transaction malleability is
often no more than a minor inconvenience, but some of the data storage methods
described are subject to a malicious actor potentially changing some or all of the data
to be stored.

• UTXO: Unspent Transaction Output. Each (non-coinbase) input references a previous
UTXO to spend the coins associated with that UTXO. One can think of the set of
UTXOs as places where Bitcoin is stored and can potentially be used as sources for
future transactions.

	

LEDGER VOL 3 (2018) 1−23
	

ledgerjournal.org

	
ISSN 2379-5980 (online)

DOI 10.5915/LEDGER.2018.101	
	
	

20

	
Appendix B: Standard Transaction Scripts

(1) Pay-to-Public-Key (P2PK):

Output (locking) Script:<PubKey> OP_CHECKSIG
Input (unlocking) Script: <Sig>

(2) Pay-to-Public-Key-Hash (P2PKH):
Output Script: OP_DUP OP_HASH160 <PKHash> OP_EQUALVERIFY OP_CHECKSIG
Input Script: <Sig><PubKey>

(3) Multisig (a.k.a. “bare multisig”, or “multisig output”):
Output Script: M <PubKey 1> ... <PubKey N> N OP_CHECKMULTISIG
Input Script: OP_0 <Sig 1> ... <Sig M>

(4) Pay-to-Script-Hash (P2SH):
Output Script: OP_HASH160 <RedeemScriptHash> OP_EQUAL
Input Script: <Data><RedeemScript>

(5) OP RETURN:
Output Script: OP_RETURN <Data> (up to 80 bytes)
(This output can never be spent, so it has no corresponding input/unlocking script.)

Appendix C: P2SH Storage - Full Scripts

(1) Data Drop w/o Sig:

Input Script:<Data (520 bytes)><Data (520 bytes)>
<Data (520 bytes)><Data (70 bytes)><RedeemScript>

Redeem Script: OP_2DROP OP_2DROP <RandomNumber (6 bytes)>
Note: A random number was included to help prevent the Redeem Script’s hash from
becoming known. (See section 6.1)

(2) Data Drop w/ Sig:
Input Script: <Sig><Data (520 bytes)><Data (520 bytes)>

<Data (489 bytes)><RedeemScript>
Redeem Script: OP_DROP OP_2DROP <PubKey> OP_CHECKSIG

(3) Data Hash w/o Sig:
Input Script:<Data 1 (520 bytes)><Data 2 (520 bytes)>

<Data 3 (520 bytes)><RedeemScript>
Redeem Script: OP_HASH160 <Data3Hash> OP_EQUALVERIFY OP_HASH160

<Data2Hash> OP_EQUALVERIFY OP_HASH160 <Data1Hash> OP_EQUAL
(4) Data Hash w/ Sig:

Input Script: <Sig><Data 1 (520 bytes)><Data 2 (520 bytes)>
<Data 3 (421 bytes)><RedeemScript>

Redeem Script: OP_HASH160 <Data3Hash> OP_EQUALVERIFY OP_HASH160
<Data2Hash> OP_EQUALVERIFY OP_HASH160 <Data1Hash>
OP_EQUALVERIFY <PubKey> OP_CHECKSIG

	

LEDGER VOL 3 (2018) 1−23
	

ledgerjournal.org

	
ISSN 2379-5980 (online)

DOI 10.5915/LEDGER.2018.101	
	
	

21

	
Appendix D: BitcoinJ Example Code

Iterating Through the Blockchain
The following code will iterate through the Blockchain up to blk file END_BLOCK_NUM
(assuming these blk files are stored in ../../Blockchain) and create an output file containing all
the output scripts that are not P2PK or P2PKH. This example will process the first 51 blk files
(numbered 0-50).

// This source code adapted from:
// http://vlkan.com/blog/post/2014/06/27/parse-bitcoin-
blockchain/BriefLogFormatter.init();

final int END_BLOCK_NUM = 50;

// output file to print non-P2PK, non-P2PKH scripts
PrintStream out = new PrintStream(new File("../../output/output0-"

+END_BLOCK_NUM+".csv"));

// Arm the blockchain file loader.
NetworkParameters np = new MainNetParams();

Context context = Context.getOrCreate(np);
List<File>blockChainFiles = new ArrayList<>();

for(inti=0; i<=END_BLOCK_NUM; i++) {

String fName = String.format("../../Blockchain/blk%05d.dat", i);
blockChainFiles.add(new File(fName));

}

// allows us to iterate through blocks
BlockFileLoaderbfl = new BlockFileLoader(np, blockChainFiles);

intblockNum = 0;
// iterate through all blocks

for (Block block : bfl) {

List<Transaction>txs = block.getTransactions();
inttxNum = 0;

// iterate through all transactions
for (Transaction tx : txs) {

intoutputNum = 0;
for (TransactionOutput output : tx.getOutputs()) {
try { // some transaction outputs cause issues

// for example, output script OP_1

Script script = output.getScriptPubKey();
// segment script into OP codes
List<ScriptChunk> chunks = script.getChunks();

// ignore P2PK

	

LEDGER VOL 3 (2018) 1−23
	

ledgerjournal.org

	
ISSN 2379-5980 (online)

DOI 10.5915/LEDGER.2018.101	
	
	

22

	
if (chunks.size() == 2

&&chunks.get(0).isPushData()
&& (chunks.get(0).data.length == 65
|| chunks.get(0).data.length == 33)
&&chunks.get(1).opcode == ScriptOpCodes.OP_CHECKSIG) {

// ignore

// ignore P2PKH
} else if (chunks.size() == 5

&&chunks.get(0).opcode == ScriptOpCodes.OP_DUP
&&chunks.get(1).opcode == ScriptOpCodes.OP_HASH160
&&chunks.get(2).isPushData()
&&chunks.get(2).data.length == 20
&&chunks.get(3).opcode == ScriptOpCodes.OP_EQUALVERIFY
&&chunks.get(4).opcode == ScriptOpCodes.OP_CHECKSIG) {

// ignore

// print other scripts to file
} else {

out.println(blockNum + "," + txNum + "," + outputNum + ","
+ output.getValue() + "," + script);

}
outputNum++;
} catch(Exception ex){

// print exceptions to console
System.out.println(blockNum + "," + txNum + "," + outputNum

+ "," + output.getValue() + ",EXCEPTION: " + ex);
}

}
txNum++;
}
blockNum++;
}

This can be modified to search for other types of scripts, printable ASCII, etc.

Creating Transactions
Code for creating a P2PKH script to pay to the address corresponding to a key:

public static Script createP2PKHScript(ECKey key) {

ScriptBuilder script = new ScriptBuilder();
script.addChunk(new ScriptChunk(ScriptOpCodes.OP_DUP, null));
script.addChunk(new ScriptChunk(ScriptOpCodes.OP_HASH160, null));
script.data(key.getPubKeyHash());
script.addChunk(new ScriptChunk(ScriptOpCodes.OP_EQUALVERIFY,

null));
script.addChunk(new ScriptChunk(ScriptOpCodes.OP_CHECKSIG, null));
return script.build();

}

Other scripts can be made easily by replacing the OP codes here with other codes. Elements
that should be added as a pushdata element should be done so with the
	

LEDGER VOL 3 (2018) 1−23
	

ledgerjournal.org

	
ISSN 2379-5980 (online)

DOI 10.5915/LEDGER.2018.101	
	
	

23

	
ScriptBuilder.data(byte[] data) method, as with the PubKeyHash above. An output
script created this way can then be added to a transaction in BitcoinJ using the
Transaction.addOutput(Coin value, Script script) instance method.

Adding inputs to a transaction is less trivial because they must (generally) be signed. Given
the transaction hash and index (within the transaction) of the UTXO to spend, as well as the
script to be redeemed, the following code will add an input to a transaction that spends that
UTXO. Note, signatures must be generated after all of the inputs have been added.

public static TransactionInputaddInputToTransaction(Transaction tx,

long index, String hash, Script scriptPubKey) {

return tx.addInput(Sha256Hash.wrap(hash), index, scriptPubKey);
}

Signing an input goes as follows, where tx is the transaction, input is the input to be signed,
key is the key used to sign the input, script is the output script to be spent, and index is the
index of the input in the transaction:

public static void signInput(Transaction tx, TransactionInput input,

ECKey key, Script script, long index) {

ScriptBuildersigScript = new ScriptBuilder();
Sha256Hash hash = tx.hashForSignature(index, script,

Transaction.SigHash.ALL, false);

ECKey.ECDSASignatureecSig = key.sign(hash);
TransactionSignaturetxSig = new TransactionSignature(ecSig,

Transaction.SigHash.ALL, false);
sigScript.data(0, txSig.encodeToBitcoin());
// Add any additional data/pubkeys/etc. to the SigScript here.

Script scriptWithSig = sigScript.build();
input.setScriptSig(scriptWithSig);
}

Other data necessary (such as a public key if redeeming a P2PKH script or arbitrary data to
store in the Blockchain) should be added as pushdata elements to sigScript as with the txSig.

