
Generating Efficient and High-Quality
Pseudo-Random Behavior on Automata Processors

Jack Wadden, Nathan Brunelle, Ke Wang, Mohamed El-Hadedy, Gabriel Robins, Mircea Stan and Kevin Skadron
University of Virginia, Charlottesville, Virginia, USA

{wadden,njb2b,kw5na,mea4c,robins,mircea,skadron}@virginia.edu

Abstract—Micron’s Automata Processor (AP) efficiently em-
ulates non-deterministic finite automata and has been shown
to provide large speedups over traditional von Neumann exe-
cution for massively parallel, rule-based, data-mining and pat-
tern matching applications. We demonstrate the AP’s ability
to generate high-quality and energy efficient pseudo-random
behavior for use in pseudo-random number generation or in
chip simulation. By recognizing that transition rules become
probabilistic when input characters are randomized, the AP is
also capable of simulating Markov chains. Combining hundreds
of parallel Markov chains creates high-quality, high-throughput
pseudo-random number sequences with greater power efficiency
than state-of-the-art CPU and GPU algorithms. This indicates
that the AP could potentially accelerate other Markov Chain-
based applications such as agent-based simulation. We explore
how to achieve throughputs upwards of 40GB/s per AP chip,
with power efficiency 6.8x greater than state-of-the-art pseudo-
random number generation on GPUs.

I. INTRODUCTION

As the breakdown in Dennard scaling makes it increasingly
expensive to improve performance of traditional serial von
Neumann architectures, heterogeneous computing, involving
GPUs, DSPs, FPGAs, ASICs, and other processors, promises a
possible path forward. The Micron Technology corporation has
developed the Automata Processor (AP) [1], a reconfigurable,
native-hardware accelerator for non-deterministic finite au-
tomata (NFA) based computation. Micron’s unique, memory-
derived architecture leverages the bit-level parallelism and ad-
dress broadcast micro-architecture inherent in memory arrays
in order to gain improvements in efficiency and state density
over previous methods for emulating NFAs in hardware [1].

The AP implements an NFA using a reconfigurable network
of state transition elements (STEs) – analogous to NFA
states – that all consume a single input stream of 8-bit
symbols. If an STE matches the input symbol, it activates,
and causes transitions to other STEs via an on-chip routing
matrix. STEs are capable of single-bit reports, analogous to
”accepting states” in traditional NFAs. The AP is an extremely
powerful and efficient pattern matcher, and has been shown to
provide large speedups over von Neumann architectures such
as CPUs and GPUs for massively parallel rule-based data-
mining applications [2], [3], [4], but the exact capabilities of
the AP and its advantage over these architectures remains an
open research question.

This paper explores one novel application of the AP: a high-
quality source of pseudo-random behavior for pseudo-random
number generation (PRNG) and other potential simulations

that can be defined with Markov chains (such as agent-
based models). We achieve efficient, high-quality, massively
parallel, MISD pseudo-random behavior by constructing and
running many parallel Markov chains, simulated using AP-
based NFAs.

Instead of driving automata transitions using conventional
input data (e.g. a DNA sequence), we consider driving au-
tomata transitions using random or pseudo-random input.
Because transitions between states in the AP are conditional
on the input stream, a stochastic input stream immediately
provides stochastic automata transitions, even though the tran-
sition rules are deterministic. Thus, probabilistic automata,
including finite state Markov chains, can be emulated using
the AP.

Using this intuition, we develop a novel method for creating
high-quality pseudo-random behavior using Markov chains
modeled by NFAs on the AP, which we call AP PRNG. We use
parallel Markov chains to model rolls of fair dice, and then
combine the results of each roll into a new pseudo-random
output string. By combining the output of parallel rolls, driven
by a single stream of random or pseudo-random input symbols
provided by a host processor (e.g. the system CPU), we can
construct new pseudo-random output hundreds of times larger
than the input used to drive transitions on chip.

However, because we emulate Markov chains using NFAs
with fixed transition functions, any non-trivial number of par-
allel Markov chains that consume the same input will produce
output that is eventually correlated and patterned. Thus, it
should be demonstrated that on-chip pseudo-random behavior
can be of high enough quality before building applications
based on this approach. This work is a strict prerequisite for
evaluating the reliability of any simulation accelerated using
shared-input parallel Markov chains, and such evaluations are
left for future work.

Correlation introduces four important questions: (1) how
does the number and size of parallel Markov chains affect
correlation among Markov chains, and (2) how long can we
run parallel Markov chains in a MISD fashion before we
are able to reliably detect non-uniform output? Also, given
results from these experiments, (3) how does the resulting
performance of AP PRNGs compare to state-of-the-art parallel
PRNGs? And (4) how can we modify the AP architecture to
increase the performance and quality of PRNG? We simulate
parallel Markov chains running on the AP in software and use
the TestU01 statistical test battery [5] to evaluate the quality
of the resulting pseudo-random output.

The key contributions and results in this paper include:
• A novel method for generating pseudo-random behavior

on the AP for PRNG or for other applications that can
be framed as probabilistic automata (such as agent-based
models) by using MISD emulation of parallel Markov
chains via non-deterministic finite automata on Micron’s
Automata Processor.

• A sensitivity analysis showing that the number of states
in a Markov chain has a significant impact on the quality
of pseudo-random behavior. An increase in the number
of states greatly increases the total possible number of
configurations of all considered Markov chains, making
it harder for statistical tests to detect correlated behavior.

• A sensitivity analysis showing that the behavior of a
large number of parallel Markov chains does not decrease
quality of combined random output. However, the output
quality is highly dependent on how integers are con-
structed from random output bits, motivating additional
output permutation circuitry in the AP or support pro-
cessor to reduce correlation among neighboring Markov
chains. These evaluations will serve as a guideline for
designing future architectures and applications that use
this execution model.

• An experiment showing that 571, fair, 8-state Markov
chains can consume approximately 1,000,000 symbol
inputs before statistical tests can reliably identify non-
uniform output. This variable threshold offers a straight-
forward performance/quality knob for PRNG.

• A performance model showing that with current tech-
nology, an AP chip is able to export 4.1GB/s of high-
quality pseudo-random output, while passing all tests in
the BigCrush test-suite. We identify bottlenecks to AP
PRNG throughput on the AP architecture, and present an
updated performance model considering an AP architec-
ture implemented on a modern transistor technology node
and memory specification. With reasonable assumptions,
we show that the AP can create 40.5GB/s of high-quality
random output per chip, using 6.8× less energy than
state-of-the-art GPU PRNGs.

• A demonstration that parallel, correlated Markov chains
can behave similarly to independent Markov chains. We
see this as a necessary first step in future research involv-
ing Markov chain simulation on parallel architectures. In
particular, this shows promise for invention on the AP,
since Markov chains are probabilistic automata.

II. BACKGROUND

A. Micron’s Automata Processor
AP Execution Model: The automata processor architec-

ture consists of a directed graph of state transition elements
(STEs), which can recognize an arbitrary character set of 8-bit
symbols. An STE activates when it (1) recognizes the current
input symbol and (2) it is enabled. An STE is considered
enabled when it is either configured to consume input from
the input stream (a start STE), or a STE connected to it via the
routing matrix activated on the previous cycle. STEs can be
configured to report on activation, producing a 1-bit output.
This is analogous to accepting an input string in a NFA.

Fig. 1. A simplified STE memory column. 8-bit input symbols are decoded
using row-address decoders. If a column reads 1 for an enabled STE, the STE
activates and sends its output signal to the routing matrix.

AP Architecture: The AP implements STEs using 256-bit
memory columns ANDed with an enable signal. Each 256-bit
column vector represents a character set of 256 possible 8-bit
characters that this STE could recognize. A simplified diagram
of an STE is shown in Figure 1.

An STE can recognize an arbitrary character set of possible
input symbols on every cycle. If an STE column reads a 1,
and the STE is enabled, the STE activates and sends its output
signal to the routing matrix. The routing matrix allows STEs
to connect to, and enable, any other STEs within the same
AP core. Before automata can be run on the AP, they must be
compiled (placed and routed) and loaded onto the AP fabric.

Columns of STEs are organized into blocks and a set of
blocks makes up an AP core. In the proposed first generation
AP chip architecture, a block contains 256 STEs, 32 of
which can report. AP cores contain 96 blocks, offering a
total of 24,576 STEs per core. AP chips contain two disjoint
cores. The first generation AP chip operates at a constant
frequency of 133MHz, consuming one symbol every 7.5ns,
thus providing an input symbol stream throughput of 133MB/s
per chip. First-generation AP chips connect to the system via
a shared DDR3 interface and have a TDP of about 4W .

When an STE on an AP chip reports, the AP generates a
report vector. Each report vector is a bit-vector representation
of all reporting STEs that activated at that particular cycle,
and contains up to 1,024 bits. Each first generation AP chip
contains 6 reporting regions capable of exporting 1,024 output
vectors in 1.8ms. Therefore a best-case upper-bound for the
full AP output throughput is 436.9MB/s per chip.

The above metrics characterize the proposed first-generation
AP architecture and implementation. Future AP architectures
may allow much lower AP reconfiguration times and much
higher output throughput. We explore these potential improve-
ments in later sections.

B. Pseudo-random Number Generation
Pseudo-random number generation (PRNG) lies at the core

of simulation and cryptographic applications. For example,
Monte Carlo methods are pervasive simulation tools in phys-
ical and social sciences and rely on continuous random sam-
pling to drive simulation of unpredictable processes. Because
fast and high-quality pseudo-random number generation is on
the critical path of these applications, developing fast and high-
quality PRNGs is of the utmost importance to improving the
quality and speed of any computational science.

Heads Tails

0.01	

0.01	
 0.90	

0.90	

Fig. 2. A simple Markov chain that simulates an unfair coin toss with two
states: Heads, and Tails. Transition probabilities between these states are
unfair, i.e. the probability of transitioning to Heads is different than Tails.

Today, while there are many PRNG algorithms, not all
are created equal. No matter the method, the harder it is to
distinguish pseudo-random output from a truly random output,
the better it represents a truly random number stream. The
literature has adopted two avenues for evaluating the quality of
PRNGs. Cryptographic applications require a PRNG to reduce
to a hardness assumption, some problem widely believed
intractable. This paper leaves such an analysis of AP PRNG
to future work. Instead, because we aim to motivate the use of
AP PRNG for Monte Carlo simulation, the literature suggests
we evaluate empirically using statistical tests.

Statistical tests distinguish random from pseudo-random in-
put by searching for over-prevalent or under-prevalent patterns.
The most comprehensive and stringent collection tests are the
BigCrush test battery from TestU01 suite [5], which includes
the functionality of the Knuth tests [6], DIEHARD [7], and
the NIST statistical test suite [8]. A test in the suite fails if
it identifies a property of the pseudo-random sequence that
should not exist in true randomness. If all tests pass, the
pseudo-random numbers have been deemed indistinguishable
from true randomness.

C. State-of-the-Art Parallel PRNG Algorithms
Mersenne Twister [9] is an extremely popular PRNG algo-

rithm used pervasively in Monte Carlo simulations. However,
it is famously difficult to port onto smaller core architectures
(e.g. GPU, XeonPhi) because it involves a large amount of
state per thread [10]. Not only is Mersenne Twister hard to
parallelize, it also fails many tests in TestU01’s BigCrush test
battery [10], and is thus a dubious choice as the gold standard
PRNG for future high-performance scientific simulation.

Philox [11] is a newer parallel PRNG algorithm that dras-
tically reduces the state requirements per parallel thread, and
relies on integer computation giving it impressive performance
on massively parallel SIMD GPU hardware–145GB/s onboard
PRNG on an NVidia GTX580 [11]. Philox is trivially paral-
lelizable, and the fastest PRNG algorithm known (both serially
and in parallel) to pass all tests in the BigCrush test suites.
Thus, we consider this algorithm the current state-of-the-art in
both performance and quality.

III. IMPLEMENTING MARKOV CHAINS ON THE AP

In informal terms, Markov chains are automata with proba-
bilistic transitions between states. An example Markov Chain
describing an unfair coin is illustrated in Figure 2.

Markov chains are defined by stochastic transition matrices,
which hold all transition probabilities from a start state (row)
to a end state (column). The transition matrix for the unfair
coin example in Figure 2 is shown in Table I.

To Heads To Tails
From Heads 0.90 0.10

From Tails 0.90 0.10

TABLE I
STOCHASTIC TRANSITION MATRIX OF A MARKOV CHAIN REPRESENTING

AN UNFAIR COIN.

A. Mapping Markov Chains to the AP
To easily communicate the concept of probabilistic transi-

tions and our implementation of Markov Chains on the AP,
we first begin with a simple-to-understand construction that
clearly illustrates the mapping and algorithm.

Construction: Consider the unfair coin example described
in the previous section and shown in Figure 2. To produce the
probabilistic transitions of the Markov chain in the automaton
we first assume the input symbol stream is a source of
uniformly distributed random symbols. Each Markov chain
can be constructed using the following algorithm provided a
stochastic transition matrix:

Algorithm 1: Construct AP Markov Chain Simulation
Data: Square Stochastic Matrix StochMat; Set of

possible input symbols Σ

Result: AP Markov Chain Simulator
1 INITIALIZATION;
2 foreach FromState do
3 Create a reporting STE “state node” representing

FromState that recognizes all input symbols;

4 Select an arbitrary FromState to be start state, activating
on start of data;

5 CONSTRUCTION;
6 foreach FromState do
7 foreach ToState do
8 Create “edge node” STE EdgeNode;
9 TransProb← StochMat[FromState][ToState];

10 Without replacement, randomly select
TransProb∗ |Σ| symbols from Σ as the character
class recognized by EdgeNode;

11 Add edge from FromState to EdgeNode;
12 Add edge from EdgeNode to ToState;

An example of this construction for the unfair coin example
is shown in Figure 3. For illustrative purposes, we restrict the
input symbols to be within the character class [0− 9]. The
proportion of symbols in each EdgeNode corresponds to the
transition probability.

Note that this construction takes two cycles to generate an
output, one to move from a “from state” node to an edge
node, and another to move from an edge node to a “to state”
node. Algorithm 1 can easily be modified to generate an
output on every cycle by also setting a randomly selected
edge node, along with an arbitrary state node, to act as a
start state. We omit this construction for clarity but assume
one random output per cycle when modeling performance of
Markov chains on AP hardware.

We leave research and evaluation of other constructions as
future work. Markov chains can also be used to construct
probabilistic automata that model more complex systems. We

Fig. 3. A Markov chain implemented on the AP corresponding to the theoret-
ical Markov chain in Figure 2, with two reporting “state nodes” representing
Heads and Tails. Reporting states are indicated by an ”R” subscript. The start
state is indicated by a ”1” superscript. Transition probabilities between these
states are unfair and are modeled by dividing the possible input symbols
[0−9] into random groups, proportional to the transition probabilities.

leave evaluation of these more complex systems, such as agent
agent-based simulations, to future work.

IV. EFFICIENT AND HIGH-QUALITY PRNG ON THE AP
Using Parallel Markov chains to increase throughput: To

construct a PRNG from a single Markov chain, we first build a
fair Markov chain of a certain number of states. The number
of states in the Markov chain should be any power of two,
ensuring a uniform distribution of 0’s and 1’s in the output bit
stream. On every cycle, a single chain will report which state
it randomly transitioned to, thus emitting log2(states) bits of
random output per Markov chain per cycle.

By adding more Markov chains, and interleaving their out-
put, we can increase the total amount of pseudo-random output
relative to the input symbols used to drive random transitions.
A single 2-state Markov chain only emits a single random bit
per random input byte. Eight 2-state chains therefore create as
much pseudo-random output as input.

Because only 32 STEs out of 256 in an AP block are capable
of reporting in the first generation AP architecture [1], each
Markov chain may be limited by either reporting elements
or total STEs per block. An N-state fair chain requires N
reporting STEs, thus we can instantiate a maximum of 16, 8,
and 4 chains per block for 2, 4, and 8-state chains respectively.
A N-state fair chain requires N2+N STEs, thus, based on STE
capacity, we can instantiate a maximum of 42, 12, and 3 chains
per block for 2, 4, and 8-state chains respectively.

Assuming that each reporting element can be used to
create random output, and assuming no chip output reporting
bottlenecks, the AP can create a staggering 51GB/s of
pseudo-random output. However, correlation among Markov
chains and practical output throughput bottlenecks prevents
AP PRNG from reaching this theoretical upper-bound. Below
we discuss the source of inter-chain correlation, and potential
mitigation techniques. Later sections propose solutions to relax
the AP’s output throughput bottlenecks.

Reducing Correlation Among Markov Chains: Parallel
Markov chains may produce output that initially looks random,
but over time, certain output configurations must appear more
often than others, and some configurations will provably never
appear. Thus, after a certain number of input symbols, the
patterns will emerge in the output. We must periodically ask
the host processor to randomize the transition tables of the
Markov chains, reconfiguring all transition STEs on the device.

Fig. 4. AP PRNG system-level diagram. A support processor provides a small
amount of pseudo-random input to drive transitions and reconfiguration.

In order to evaluate whether or not the AP and the above
algorithm can be used as a practical PRNG accelerator, we
must answer the following questions:

1) How does the number of states in each Markov chain
effect the quality of random output? Because AP re-
configuration may be expensive, we favor chains that
produce higher quality output as they will postpone
mandatory reconfiguration.

2) How does the number of parallel Markov chains effect
the quality of random output? If increasing the number
of chains reduces random quality, and increases recon-
figuration frequency, using a large amount of on-chip
resources may hurt performance.

3) What is the shortest reconfiguration threshold, i.e. the
number of input symbols that can be consumed by the
best performing configuration before we can identify
non-random behavior, based on the best performing pa-
rameters identified by the previous questions? A shorter
reconfiguration threshold, will cause the algorithm to
spend more time building new transition tables and
reconfiguring the AP.

4) Can we increase random quality with small changes to
the AP architecture? By how much will these changes
allow us to increase the reconfiguration threshold while
still passing all tests in BigCrush?

5) What is the performance of AP PRNG on the proposed
first generation AP hardware compared to current state-
of-the-art PRNGs? What is the performance of AP
PRNG on a plausible next generation AP implemen-
tation, assuming adjustments to the AP architecture,
and projected implementation on a modern transistor
technology node and memory specification?

V. EXPERIMENTAL FRAMEWORK

To test AP PRNG performance and quality, we implemented
Algorithm 1 in C++ and used the test batteries in the TestU01
statistical test suite [5] to assess quality of random output.
Because first-generation AP hardware is not yet available, this
is a simulation of AP PRNG behavior based on Markov chain
automata developed and verified in Micron’s AP SDK. A high-
level diagram of the modeled system is shown in Figure 4.

TestU01 is made of three main test batteries: SmallCrush,
Crush, and BigCrush. SmallCrush consists of 10 statistical
tests, and is meant to quickly check obvious statistical flaws in
PRNG output. Crush applies 96 distinct statistical tests (144

total test statistics), while BigCrush applies 106 distinct tests
(160 total test statistics). Because production AP hardware
is not currently available, the BigCrush test battery can take
between 3-7 days to complete on a single CPU core, depending
on how often simulated AP reconfiguration is required. We
therefore do initial sensitivity analyses using SmallCrush, and
Crush, in order to quickly identify trends in relative quality of
random output between different AP PRNG configurations.
Once we identify a suspected proxy configuration for the
best-performing AP PRNG, we use the full BigCrush test
battery, the most comprehensive, and exhaustive test-suite
available [5], [10], to identify reconfiguration thresholds that
provide good random quality. We then use the derived AP
PRNG parameters and input thresholds as input to a perfor-
mance model and compare to state-of-the-art PRNGs.

Because AP PRNG requires a host processor to supply
random input to the hypothetical AP, and to randomly con-
figure Markov chain transition tables, we must provide a
source of pseudo-random numbers that simulates the role of
an AP PRNG host processor. For this evaluation we use the
Philox32x4 10 generator [11] to provide all random input. As
one should expect for any PRNG, we found that using lower
quality input sources, such as the C standard library’s rand() or
Mersenne Twister, translated to significantly lower quality AP
PRNG output. We therefore use the Philox algorithm, as it is
the most performant and highest quality generator available,
and available as an open source C++ library [12]. We use
this library implementation to drive all random configuration
and streaming input to the AP PRNG. We performed all
evaluations of random quality on a cluster of Intel i7-4820k
CPUs operating at 3.7GHz with 64 logical cores.

VI. SENSITIVITY ANALYSES

A. Effect of Markov Chain Size on Random Quality
To show how randomness quality is affected by Markov

chains of different sizes, we run multiple trials of SmallCrush
using the AP PRNG simulator. Although SmallCrush may
not be the most stringent test suite, and thus less useful
when comparing to state-of-the-art PRNGs, it is suitable to
quickly identify relative patterns in failures among different
AP PRNGs, and motivate appropriate parameters for more
stringent tests.

We configured AP PRNG with a reconfiguration threshold
of 50,000 input symbols, 384 parallel Markov chains, each
with 2, 4, or 8 states. For each state configuration, we ran 16
trials of SmallCrush and collected data on all test failures. The
results are shown in Table II.

Number of Markov Chain States 2 4 8
Average Number of Failures 5.5 2 0
Distinct Number of Failures 6 2 0

TABLE II
IT IS STATISTICALLY HARDER TO IDENTIFY CORRELATION BETWEEN

CHAINS WITH MORE STATES.

We can see that random quality is highly sensitive to the
number of states used to build each Markov chain. 2-state
Markov chains fail an average of 5.5 tests over the 16 trials,
failing 6 unique tests in the test suite. 4-state Markov chains
consistently fail the same two tests over the 16 trials. 8-
state Markov chains are completely resistant to failure over

Fig. 5. Average number of Crush failures over four trials for parallel 8-state
Markov chains with a reconfiguration threshold of 200,000. The darker bars
represent failure rates when interleaving output bits. Spikes in failure rates
occur when the same Markov chains always contribute to the same bits in
output integers. The lighter bars represent failure rates when successive output
from a Markov chain contributes to a single output integer. This eliminates
the spike in failures, but reduced overall performance.

the 16 trials, passing all tests. A larger number of states
allows for a larger number of possible configurations of a
single Markov chain, and therefore a single Markov chain
with 8 states will take much longer to repeat states and exhibit
statistically identifiable non-random behavior than a chain with
2 states. When considering configurations of states of a set of
Markov chains, this effect is compounded, as it takes much
longer to identify which configurations occur too frequently
or infrequently as compared to random.

B. Effect of Parallel Markov Chains on Random Quality
To show how the number of parallel, 8-state Markov chains

affects the random quality produced, we explore performance
of AP PRNG with from 32 to 768 Markov chains operating
in parallel. For these experiments, we use Crush to evaluate
random quality. Figure 5 summarizes the experimental results.
Apart from two obvious outliers, when using 352 and 704
parallel Markov chains, as the number of parallel Markov
chains increases, quality of randomness is stable, suggesting
that practically, larger numbers of parallel Markov chains do
not significantly decrease quality of random output.

We hypothesized that the marked increases in the failure rate
for 352 (32×11) and 704 (64×11) parallel Markov chains was
due to an undesirable property of our algorithm for converting
output bits from AP PRNG to 32-bit integers. Because the
value of an integer is influenced more by high-significance
bits, non-random behavior in high-significance bits will be
noticed quicker than non-random behavior in low-significance
bits on the numeric-based tests.

Because algorithm 1 constructs 32-bit integers by concate-
nating three output bits from every 8-state chain in a round-
robin fashion, certain numbers of chains will align their output,
such that a single chain will always contribute to the same
digits. This puts undue reliance on chains that contribute
highly significant bits of integers, and may amplify patterns in
the psuedo-random output. To test this hypothesis, we modified
Algorithm 1 to have a Markov chain provide all the bits for
a single 32-bit value before the value is consumed by the
statistical tests. Thus, all Markov chains contribute uniformly
to the digits in a single integer, rather than a particular set of
digits. The results of this experiment are shown in Figure 5.

The spikes in failure rates are eliminated, although failure
rates are higher on average, supporting our hypothesis. We

Fig. 6. As the reconfiguration threshold increases, it is becomes easier for
statistical tests to identify non-random behavior.

therefore adjust Algorithm 1 to use the largest prime number
of Markov chains able to fit onto an AP chip. A prime number
of machines will prevent any one machine from contributing
to the same location in an supplied 32-bit integer at least until
we provide 32 times that prime number of input symbols. The
maximum number of 8-state Markov chains that will fit onto
an AP chip is 576; we therefore use 571 (the largest prime less
than 576) 8-state chains per AP chip as the highest performing
configuration for final quality and performance evaluations.

C. Effect of Input Size on Random Quality
To show how the quality of random output is affected by

the number of input symbols, we ran four trials of 761 8-
state Markov chains through the Crush test suite, varying
the number of input symbols from 20,000 to 90,000. We
hypothesized that the more symbols we allow each parallel
machine to consume without reconfiguration, the more likely
the output is to look non-random. Therefore, shorter reconfigu-
ration thresholds will likely increase quality of random output.
However, shorter reconfiguration thresholds force the AP to
reconfigure more often, incurring a reconfiguration penalty.
The results of the experiment are shown in Figure 6.

Figure 6 shows that, as we increase the number of input
symbols between reconfigurations, the quality of random out-
put decreases. However, even for 20,000 symbols, 761, 8-
state Markov chains do not consistently pass all Crush tests.
In initial exploratory tests, some BigCrush tests even failed
with reconfiguration thresholds as low as 10,000, meaning
that even shorter reconfiguration thresholds are required in
order to match the quality of the Philox algorithm. As the
AP only takes 7.5ns to consume a symbol, but approximately
45ms to reconfigure [2], a reconfiguration threshold of 10,000
would cause the AP to spend 99.83% of its time reconfiguring,
translating to 48MB/s of output.

We observe that performance of AP PRNG could be dras-
tically increased if we could reduce the impact of neighbor
dependence. Because our algorithm always forms integers by
interleaving bits of neighboring Markov chains in a deter-
ministic manner, we put undue pressure on close groups of
machines to produce uncorrelated output. Previously, we saw
that neighbor dependence induced catastrophic failure rates
when the same configuration of machines was always used to
contribute the same digits of output integers. By using a prime
number of machines, we could force this configuration to at
least rotate. However, rotation still preserves the relative order

Fig. 7. Output quality of AP PRNG with output permutation hardware greatly
increases quality of random output. AP PRNG passes all tests in BigCrush
with a reconfiguration threshold of at least 1,000,000

of machines contributing to any individual output integer. To
eliminate neighbor dependence without decreasing throughput,
we investigate potential impact of output permutation via
pipelined support hardware or software to reorder output bits
of a group of Markov chains before we combine the bits into
integer values for analysis.

We configured AP PRNG to use 571 8-state Markov chains
with 32-wide permutation hardware that changes the output or-
dering of every 32 Markov chains every 1,000 symbol cycles.
We then ran four trials of BigCrush to assess improvements
in quality of random output. Results are shown in Figure 7.
Compared to the results from Figure 6, random output quality
greatly improved. Previously, AP PRNG failed all tests in
Crush with a reconfiguration threshold of 20,000 input sym-
bols. However, AP PRNG with permutation capability passes
all BigCrush tests with a reconfiguration threshold of at least
1,000,000 symbols. This indicates that neighbor dependence
was a major contributor to poor output quality. AP PRNG with
permutation capability can generate at least 50× more random
output before full reconfiguration is required.

While this functionality is simulated in software, we hy-
pothesize its implementation as an addition to the reporting
architecture, support ASIC, or via the host or support pro-
cessor. The most efficient implementation will depend on the
particular deployment scenario of the AP. Output permutation
is only one way of increasing quality of output, and this result
motivates further studies to identify other methods (especially
to replace the simple round-robin scheme) to cheaply mitigate
the effects of neighbor dependence in hardware, or software.

VII. AP PRNG PERFORMANCE MODEL

The above sensitivity analyses motivate using 571, 8-state
Markov chains, with a reconfiguration threshold of at least
1,000,000 input symbols, and a permutation threshold of
1,000 as a high-quality PRNG. To analyze the practical
performance of this AP PRNG configuration, we constructed
a performance model based on these parameters and the re-
ported configuration of the first-generation AP architecture [1].
Because the AP operates at 133MHz, consuming one 8-bit
symbol and executing all transition rules every 7.5ns cycle,
an AP performance model does not require simulation. Below
we describe the model inputs, output metrics, and sensitivity
to certain architectural parameters.

First Generation AP Architectural Parameters
Frequency 133MHz
Cycle Time (Tc) 7.5ns
STE Size 256 bits
Random State per Chip (ChipState) 1.17MB
Est. AP Reconfiguration Time (Tr) 45ms

AP PRNG Parameters
States per Markov chain (Ns) 8
Markov chains per AP Chip (Nmc) 571
Input Reconfiguration Threshold (IR) 1,000,000
Permutation Width (PW) 32
Permutation Reconfiguration Threshold (PR) 1,000

AP PRNG Performance Model
Chip Output per Input Symbol (O) log2(Ns)∗Nmc
Random Generation Time (TR) IR ∗Tc
Runs per second (Runs) 1/(TRun +Tr)
AP PRNG Throughput (P) Runs∗O
Random Input Stream Rate (Ins) Runs∗ IR
Random Input Required
for Reconfiguration (Inr) Runs∗ChipState
Random Input Required
per Permutation (Inp) PW log2(PW)

Fig. 8. Percentage of runtime spent reconfiguring vs. AP PRNG throughput
with different reconfiguration thresholds. Performance increases dramatically
if AP PRNG is able to reconfigure less frequently.

A. Performance Sensitivity to Reconfiguration Threshold

Figure 8 shows the throughput of AP PRNG predicted by
the performance model for various reconfiguration thresholds
(IR). When IR = 1,000,000, AP PRNG produces 4.1GB/s of
random output per proposed first-gen AP chip.

One unique feature of AP PRNG is that it allows the user
to easily trade random quality for higher random throughput.
This is desirable if an application or simulation does not
require extremely high-quality randomness and is constrained
by power, or performance. If strict random quality is not
required, and the user allows for a longer IR, the model predicts
that performance can be increased dramatically. Figure 8
shows that for an IR = 10,000,000, a single first-gen AP chip
is capable of producing 17.8GB/s of random output. End users
will therefore be able to reduce the number of AP chips, and
power consumption, or increase performance, if statistically
perfect randomness is not required for a particular application.

AP PRNG also requires a source of random input to drive
automata transitions, reconfiguration, and permutation. While
we assume the system host processor is able to implement the
Philox32×4 10 algorithm and provide this random input, the
resulting need for random input throughput can be significant.
For IR = 1,000,000, the model predicts we need 200.7MB/s
of random input per chip. For IR = 10,000,000, the model
predicts we need 176.3MB/s of random input per chip.

Memory Technology DDR3 DDR4 HMC 2.0
Peak Throughput (GB/s) 12.8 17.0 320
Tr (µs) 91.4 68.8 7.3
AP Chip Output (GB/s) 28.2 28.3 28.5
Throughput Limited Output (GB/s) 12.8 17.0 28.5

TABLE III
AP PRNG PERFORMANCE MODELED ON DIFFERENT MEMORY

TECHNOLOGIES. AP PRNG THROUGHPUT IS LIMITED BY PEAK MEMORY
THROUGHPUT FOR DDR3 AND DDR4 TECHNOLOGIES.

B. Performance on Future AP Hardware
On the first generation AP chip hardware, maximum output

throughput is projected to be 436.9MB/s [13], thus limiting
the practical amount of random output that can be exported off
chip. STE reconfiguration time, which we have shown to be
the next most significant performance bottleneck, is projected
to be 45ms on first-generation AP hardware. While these
parameters represent the projected performance of the first-
generation AP chip architecture and implementation, they do
not reflect fundamental bottlenecks to AP PRNG. For example,
output report vectors and STE columns are implemented as
DRAM memory; therefore, it is not unreasonable to assume
that both STE reconfiguration and output reporting could
happen at or near native memory I/O speeds, drastically
decreasing reconfiguration times and increasing practical AP
PRNG output throughput.

We consider the performance of AP PRNG where writes
could occur at native DDR3, DDR4 and Hybrid Memory Cube
(HMC) throughputs. HMC technology accomplishes massive
I/O throughput by stacking DRAM layers directly on top of
logic, and inserting vertical communication links with through-
silicon vias [14]. One could integrate the AP into HMC as
one or many layers of a stacked HMC design as a part
of a heterogeneous memory module. Table III shows the
performance of DDR3, DDR4, and HMC2.0 technologies with
derived reconfiguration times (TR), and AP PRNG throughput.

For 571, 8-state Markov chains we only need to reconfigure
all transition STEs (64 for 8-state chains). For a single chip,
this translates to 1.17MB of state. Table III shows that even if
we reconfigure the AP using native DDR3 bandwidth, the AP
PRNG performance model predicts each AP chip can produce
28.2GB/s of high-quality pseudo-random output. However,
peak DDR3 throughput is only 12.8GB/s, and thus limits the
practical amount of output we can export off chip.

If we consider future high-throughput memory technologies,
such as Hybrid Memory Cube (HMC) [14], the AP PRNG
performance model predicts that each AP chip will produce a
comparable 28.33GB/s of pseudo-random output. However,
HMC’s much larger output bandwidth allows us to easily
export this output off chip.

As we increase the number of reconfigurations per second,
AP PRNG also requires more random input throughput. The
HMC configuration, with TR = 1,000,000, requires 289MB/s
of random input per chip, about 7× larger than AP PRNG on
the first-generation AP chip. While this is not an insignificant
amount of random input, the host processor can easily supply
it. The significant amount of state needed for STE reconfigu-
ration motivates research into techniques to increase TR (such
as output permutation) without sacrificing random quality.

Future AP architectures implemented on cutting-edge tran-
sistor process nodes will also most likely have larger STE ca-

Fig. 9. AP PRNG is up to 6.8× more power efficient than the highest-
throughput reported GPU PRNG depending on the deployment scenario.

pacities. Adjusting the model for a reasonable 1.41× increase
in STE capacity (corresponding to 1.41×more Markov chains)
per AP core, AP PRNG can produce 40.5GB/s of random out-
put per chip, while only requiring 355MB/s of random input
from the host processor to configure transition tables, drive
automata transitions, and drive permutation reconfiguration.

C. Estimating AP PRNG Power Advantage
Ultimately, performance and power advantages over current

PRNG implementations will greatly depend on the implemen-
tation and deployment scenario of AP PRNG or other appli-
cations of Markov chains such as discrete event simulations,
however, we project that AP PRNG will be much more power
efficient than GPU PRNG and Markov-chain based discrete-
event simulations. For example, the GTX 580 GPU used in
Salmon et.al [11] has a TDP of 244W, while each DDR3-based
AP chip has a projected TDP of 4W, and stacked HMC-based
memories are projected to use 70% less energy than DDR3.
Figure 9 shows the PRNG efficiency of a few different realistic
AP PRNG deployment scenarios.

All AP deployment scenarios require a support processor
to generate random input and configure the AP. We assume
that a typical single CPU support processor core consumes
35W. The configuration with 4 AP chips implemented in
an HMC technology produces 4MB/s/W, 6.8× more power
efficient than the best performing GPU PRNG reported in
the literature [11], and 10.8× more power efficient than our
measured experiments using the curand library implementation
of Philox32x4 10 on an NVidia K20C GPU. Disregarding
support processor power consumption, and conservatively as-
suming a 4W TDP per AP chip, AP chips are 16.8× more
power efficient than the reported GPU implementation.

VIII. CONCLUSIONS AND FUTURE WORK
This work explored using Markov chains emulated on Mi-

cron’s Automata Processor (AP) as an efficient, high-quality,
and high-performance source of pseudo-random behavior. We
first showed that the AP can emulate Markov chains, which
can then be used for pseudo-random number generation, or
other on-chip probabilistic computation such as agent-based
simulation. However, many parallel NFA-based Markov chains
driven by a single source of random input are inherently
correlated, and may reduce the quality of psuedo-randomness
or simulation results.

To test the quality of random behavior from correlated
Markov chains we used the most stringent statistical test
suite available (TestU01) and showed that the proposed first-
generation AP chip is capable of producing 4.1GB/s of

high quality (indistinguishable from random) pseudo-random
output with implementations on current memory standards
and an older transistor process node. If using imminent high-
bandwidth memory specifications, such as Micron’s hybrid
memory cube (HMC), and a state-of-the-art process technol-
ogy node, the AP architecture is capable of producing upwards
of 40.5GB/s of high-quality pseudo-random output per chip.

Our experiments show that MISD, non-von Neumann,
memory-based architectures, such as the Automata Processor,
are promising as fast and efficient accelerators for pseudo-
random number generation and Markov chain based simula-
tion, and will offer exciting performance and power advantages
over purely parallel von Neumann PRNG for applications in
future heterogeneous systems. Motivated by the high-quality
of output from Markov chains over many thousands of input
symbols, future work will focus evaluating performance and
power benefits of on-chip agent-based simulations such as
SI/SIS agent-based epidemiology models.

IX. ACKNOWLEDGMENTS
This work was partly funded by C-FAR, one of six centers

of STARnet, a Semiconductor Research Corporation program
sponsored by MARCO and DARPA, Achievement Rewards
for College Scientists (ARCS), Micron Technologies, and NSF
grant no. EF-1124931.

REFERENCES

[1] P. Dlugosch, D. Brown, P. Glendenning, M. Leventhal, and H. Noyes,
“An efficient and scalable semiconductor architecture for parallel au-
tomata processing,” IEEE Transactions on Parallel and Distributed
Systems, vol. 99, p. 1, 2014.

[2] K. Wang, Y. Qi, J. J. Fox, M. R. Stan, and K. Skadron, “Association
rule mining with the micron automata processor,” in IEEE International
Parallel and Distributed Processing Symposium (IPDPS), pp. 689–699,
IEEE, 2015.

[3] K. Zhou, J. Fox, K. Wang, D. Brown, and K. Skadron, “Brill tagging on
the micron automata processor,” in Semantic Computing (ICSC), 2015
IEEE International Conference on, pp. 236–239, Feb 2015.

[4] C. Sabotta, Advantages and challenges of programming the Micron
Automata Processor. PhD thesis, Iowa State University, 2013.

[5] P. L’Ecuyer and R. Simard, “Testu01: A c library for empirical testing
of random number generators,” ACM Trans. Math. Softw., vol. 33, Aug.
2007.

[6] D. E. Knuth, The Art of Computer Programming, Volume 2 (3rd
Ed.): Seminumerical Algorithms. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 1997.

[7] G. Marsaglia, “Diehard: a battery of tests of randomness,” See http://stat.
fsu. edu/ geo/diehard. html, 1996.

[8] A. Rukhin, J. Soto, J. Nechvatal, E. Barker, S. Leigh, M. Levenson,
D. Banks, A. Heckert, J. Dray, S. Vo, A. Rukhin, J. Soto, M. Smid,
S. Leigh, M. Vangel, A. Heckert, J. Dray, and L. E. B. III, “A
statistical test suite for random and pseudorandom number generators
for cryptographic applications,” 2001.

[9] M. Matsumoto and T. Nishimura, “Mersenne twister: A 623-
dimensionally equidistributed uniform pseudo-random number genera-
tor,” ACM Trans. Model. Comput. Simul., vol. 8, pp. 3–30, Jan. 1998.

[10] M. Manssen, M. Weigel, and A. K. Hartmann, “Random number
generators for massively parallel simulations on GPU,” The European
Physical Journal-Special Topics, vol. 210, no. 1, pp. 53–71, 2012.

[11] J. K. Salmon, M. A. Moraes, R. O. Dror, and D. E. Shaw, “Parallel
random numbers: as easy as 1, 2, 3,” in 2011 International Conference
for High Performance Computing, Networking, Storage and Analysis
(SC), pp. 1–12, IEEE, 2011.

[12] “Random123.” http://www.deshawresearch.com/resources random123.
html.

[13] “Designing for the Micron D480 Automata Processor.”
http://www.micronautomata.com/documentation/anml documentation/
c D480 design notes.html.

[14] “Hybrid memory cube specification 2.0.” http://www.
hybridmemorycube.org/files/SiteDownloads/HMC-30G-VSR HMCC
Specification Rev2.0 Public.pdf.

