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Abstract. This work considers the deployment of pseudo-random num-
ber generators (PRNGs) on graphics processing units (GPUs), devel-
oping an approach based on the xorgens generator to rapidly produce
pseudo-random numbers of high statistical quality. The chosen algorithm
has configurable state size and period, making it ideal for tuning to the
GPU architecture. We present a comparison of both speed and statistical
quality with other common parallel, GPU-based PRNGs, demonstrating
favourable performance of the xorgens-based approach.
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1 Introduction

Motivated by compute-intense Monte Carlo methods, this work considers the
tailoring of pseudo-random number generation (PRNG) algorithms to graph-
ics processing units (GPUs). Monte Carlo methods of interest include Markov
chain Monte Carlo (MCMC) [5], sequential Monte Carlo [4] and most recently,
particle MCMC [1], with numerous applications across the physical, biological
and environmental sciences. These methods demand large numbers of random
variates of high statistical quality. We have observed in our own work that, after
acceleration of other components of a Monte Carlo program on GPU [13, 14], the
PRNG component, still executing on the CPU, can bottleneck the whole pro-
cedure, failing to produce numbers as fast as the GPU can consume them. The
aim, then, is to also accelerate the PRNG component on the GPU, without com-
promising the statistical quality of the random number sequence, as demanded
by the target Monte Carlo applications.

Performance of a PRNG involves both speed and quality. A metric for the
former is the number of random numbers produced per second (RN/s). Measure-
ment of the latter is more difficult. Intuitively, for a given sequence of numbers,
an inability to discriminate their source from a truly random source is indicative
of high quality. Assessment may be made by a battery of tests which attempt to
identify flaws in the sequence that are not expected in a truly random sequence.
These might include, for example, tests of autocorrelation and linear dependence.
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Commonly used packages for performing such tests are the DIEHARD [10] and
TestU01 [8] suites.

The trade-off between speed and quality can take many forms. Critical pa-
rameters are the period of the generator (the length of the sequence before re-
peating) and its state size (the amount of working memory required). Typically,
a generator with a larger state size will have a larger period. In a GPU computing
context, where the available memory per processor is small, the state size may
be critical. Also, a conventional PRNG produces a single sequence of numbers;
an added challenge in the GPU context is to produce many uncorrelated streams
of numbers concurrently.

Existing work includes the recent release of NVIDIA’s CURAND [15] library,
simple random generators in the Thrust C++ library [6], and early work for
graphics applications [7]. Much of this work uses simple generators with small
state sizes and commensurately short periods, in order not to exceed the limited
resources that a GPU provides to individual threads. The statistical quality of
numbers produced by these algorithms is not necessarily adequate for Monte
Carlo applications, and in some cases can undermine the procedure enough to
cause convergence to the wrong result.

The Mersenne Twister [12] is the de facto standard for statistical applications
and is used by default in packages such as MATLAB. It features a large state
size and long period, and has recently been ported to GPUs [17]. However, it
has a fixed and perhaps over-large state size, and is difficult to tune for optimal
performance on GPUs. In this work we adapt the xorgens algorithm of [2, 3].
The attraction of this approach is the flexible choice of period and state size,
facilitating the optimisation of speed and statistical quality within the resource
constraints of a particular GPU architecture.

We begin with a brief overview of CUDA, then discuss qualitative testing of
PRNGs, including the Mersenne Twister for Graphic Processors (MTGP), CU-
RAND and xorgens generators. We then describe our adaptation of the xorgens
algorithm for GPUs. Finally, the results of testing these generators are presented
and some conclusions drawn.

1.1 The NVIDIA Compute Unified Device Architecture (CUDA)
and the Graphics Processing Unit (GPU)

The Compute Unified Device Architecture (CUDA) was introduced by the NVIDIA
Corporation in November 2006 [16]. This architecture provides a complete solu-
tion for general purpose GPU programming (GPGPU), including new hardware,
instruction sets, and programming models. The CUDA API allows communica-
tion between the CPU and GPU, allowing the user to control the execution of
code on the GPU to the same degree as on the CPU.

A GPU resides on a device, which usually consists of many multiprocessors
(MPs), each containing some processors. Each CUDA compatible GPU device
has a globally accessible memory address space that is physically separate from
the MPs. The MPs have a local shared memory space for each of the processors
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associated with the MP. Finally, each processor has its own set of registers and
processing units for performing computations.

There are three abstractions central to the CUDA software programming
model, provided by the API as simple language extensions:

– A hierarchy of thread groupings – a thread being the smallest unit of pro-
cessing that can be scheduled by the device.

– Shared memory – fast sections of memory common to the threads of a group.
– Barrier synchronisation – a means of synchronising thread operations by

halting threads within a group until all threads have met the barrier.

Threads are organised into small groups of 32 called warps for execution on
the processors, which are Single-Instruction Multiple-Data (SIMD) and implic-
itly synchronous. These are organised for scheduling across the MPs in blocks.
Thus, each block of threads has access to the same shared memory space. Finally,
each block is part of a grid of blocks that represents all the threads launched
to solve a problem. These are specified at the invocation of kernels – functions
executed on the GPU device – which are managed by ordinary CPU programs,
known as host code.

As a consequence of the number of in-flight threads supported by a device,
and the memory requirements of each thread, not all of a given GPU device’s
computational capacity can be used at once. The fraction of a device’s capacity
that can be used by a given kernel is known as its occupancy.

1.2 Statistical Testing: TestU01

Theoretically, the performance of some PRNGs on certain statistical tests can be
predicted, but usually this only applies if the test is performed over a complete
period of the PRNG. In practice, statistical testing of PRNGs over realistic
subsets of their periods requires empirical methods [8, 10].

For a given statistical test and PRNG to be tested, a test statistic is computed
using a finite number of outputs from the PRNG. It is required that the distri-
bution of the test statistic for a sequence of uniform, independently distributed
random numbers is known, or at least that a sufficiently good approximation
is computable [9]. Typically, a p-value is computed, which gives the probability
that the test statistic exceeds the observed value.

The p-value can be thought of as the probability that the test statistic or
a larger value would be observed for perfectly uniform and independent input.
Thus the p-value itself should be distributed uniformly on (0, 1). If the p-value is
extremely small, for example of the order 10−10, then the PRNG definitely fails
the test. Similarly if 1− p is extremely small. If the p-value is not close to 0 or
1, then the PRNG is said to pass the test, although this only says that the test
failed to detect any problem with the PRNG.

Typically, a whole battery of tests is applied, so that there are many p-
values, not just one. We need to be cautious in interpreting the results of many
such tests; if performing N tests, it is not exceptional to observe that a p-value
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is smaller than 1/N or larger than 1 − 1/N . The TestU01 library presented
by L’Ecuyer and Simard [8] provides a thorough suite of tests to evaluate the
statistical quality of the sequence produced by a PRNG. It includes and improves
on all of the tests in the earlier DIEHARD package of Marsaglia [10].

1.3 The Mersenne Twister for Graphic Processors

The MTGP generator is a recently-released variant of the well known Mersenne
Twister [12, 17]. As its name suggests, it was designed for GPGPU applications.
In particular, it was designed with parallel Monte Carlo simulations in mind. It is
released with a parameter generator for the Mersenne Twister algorithm to sup-
ply users with distinct generators on request (MTGPs with different sequences).
The MTGP is implemented in NVIDIA CUDA [16] in both 32-bit and 64-bit
versions. Following the popularity of the original Mersenne Twister PRNG, this
generator is a suitable standard against which to compare GPU-based PRNGs.

The approach taken by the MTGP to make the Mersenne Twister parallel
can be explained as follows. The next element of the sequence, xi, is expressed
as some function, h, of a number of previous elements in the sequence, say

xi = h(xi−N , xi−N+1, xi−N+M ).

The parallelism that can be exploited in this algorithm becomes apparent when
we consider the pattern of dependency between further elements of the sequence:

xi = h(xi−N , xi−N+1, xi−N+M )
xi+1 = h(xi−N+1, xi−N+2, xi−N+M+1)

...
xi+N−M−1 = h(xi−M−1, xi−M , xi−1)
xi+N−M = h(xi−M , xi−M+1, xi).

The last element in the sequence, which produces xi+N−M , requires the value
of xi, which has not yet been calculated. Thus, only N −M elements of the
sequence produced by a Mersenne Twister can be computed in parallel.

As N is fixed by the Mersenne Prime chosen for the algorithm, all that can be
done to maximise the parallel efficiency of the MTGP is careful selection of the
constant M . This constant, specific to each generator, determines the selection
of one of the previous elements in the sequence in the recurrence that defines
the MTGP. Thus, it has a direct impact on the quality of the random numbers
generated, and the distribution of the sequence.

1.4 CURAND

The CUDA CURAND Library is NVIDIA’s parallel PRNG framework and li-
brary. It is documented in [16]. The default generator for this library is based
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on the XORWOW algorithm introduced by Marsaglia [11]. The XORWOW al-
gorithm is an example of the xorshift class of generators.

Generators of this class have a number of advantages. The algorithm be-
hind them is particularly simple when compared to other generators such as the
Mersenne Twister. This results in simple generators which are very fast but still
perform well in statistical tests of randomness.

The idea of the xorshift class generators is to combine two terms in the
pseudo-random sequence (integers represented in binary) using left/right shifts
and “exclusive or” (xor) operations to produce the next term in the sequence.
Shifts and xor operations can be performed quickly on computing architectures,
typically faster than operations such as multiplication and division. Also, gener-
ators designed on this principle generally do not require a large number of values
in the sequence to be retained (i.e. a large state space) in order to produce a
sequence of satisfactory statistical quality.

1.5 xorgens

Marsaglia’s original paper [11] only gave xorshift generators with periods up to
2192−1. Brent [2] recently proposed the xorgens family of PRNGs that generalise
the idea and have period 2n − 1, where n can be chosen to be any convenient
power of two up to 4096. The xorgens generator has been released as a free
software package, in a C language implementation (most recently xorgens version
3.05 [3]).

Compared to previous xorshift generators, the xorgens family has several
advantages:

– A family of generators with different periods and corresponding memory
requirements, instead of just one.

– Parameters are chosen optimally, subject to certain criteria designed to give
the best quality output.

– The defect of linearity over GF(2) is overcome efficiently by combining the
output with that of a Weyl generator.

– Attention has been paid to the initialisation code (see comments in [2, 3]
on proper initialisation), so the generators are suitable for use in a parallel
environment.

For details of the design and implementation of the xorgens family, we refer
to [2, 3]. Here we just comment on the combination with a Weyl generator.

This step is performed to avoid the problem of linearity over GF(2) that
is common to all generators of the Linear-Feedback Shift Register class (such
as the Mersenne Twister and CURAND). A Weyl generator has the following
simple form:

wk = wk−1 + ω mod 2w,

where ω is some odd constant (a recommended choice is an odd integer close to
2w−1(

√
5− 1)). The final output of an xorgens generator is given by:

wk(I +Rγ) + xk mod 2w, (1)
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where xk is the output before addition of the Weyl generator, γ is some integer
constant close to w/2, and R is the right-shift operator. The inclusion of the
term Rγ ensures that the least-significant bits have high linear complexity (if we
omitted this term, the Weyl generator would do little to improve the quality of
the least-significant bit, since (wk mod 2) is periodic with period 2).

As addition mod 2w is a non-linear operation over GF(2), the result is a
mixture of operations from two different algebraic structures, allowing the se-
quence produced by this generator to pass all of the empirical tests in BigCrush,
including those failed by the Mersenne Twister. A bonus is that the period is
increased by a factor 2w (though this is not free, since the state size is increased
by w bits).

2 xorgensGP

Extending the xorgens PRNG to the GPGPU domain is a nontrivial endeavour,
with a number of design considerations required. We are essentially seeking to
exploit some level of parallelism inherent in the flow of data. To realise this, we
examine the recursion relation describing the xorgens algorithm:

xi = xi−r(I + La)(I +Rb) + xi−s(I + Lc)(I +Rd).

In this equation, the parameter r represents the degree of recurrence, and conse-
quently the size of the state space (in words, and not counting a small constant
for the Weyl generator and a circular array index). L and R represent left-shift
and right-shift operators, respectively. If we conceptualise this state space array
as a circular buffer of r elements we can reveal some structure in the flow of
data. In a circular buffer, x, of r elements, where x[i] denotes the ith element,
xi, the indices i and i + r would access the same position within the circular
buffer. This means that as each new element xi in the sequence is calculated
from x[i− r] and x[i− s], the result replaces the rth oldest element in the state
space, which is no longer necessary for calculating future elements.

Now we can begin to consider the parallel computation of a sub-sequence of
xorgens. Let us examine the dependencies of the data flow within the buffer x
as a sequence is being produced:

xi = xi−rA+ xi−sB

xi+1 = xi−r+1A+ xi−s+1B

...
xi+(r−s) = xi−r+(r−s)A+ xi−s+(r−s)B

= xi−sA+ xi+r−2sB

...
xi+s = xi−r+sA+ xi−s+sB

= xi−r+sA+ xiB.
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If we consider the concurrent computation of the sequence, we observe that the
maximum number of terms that can be computed in parallel is

min(s, r − s).

Here r is fixed by the period required, but we have some freedom in the choice of
s. It is best to choose s ≈ r/2 to maximise the inherent parallism. However, the
constraint GCD(r, s) = 1 implies that the best we can do is s = r/2±1, except in
the case r = 2, s = 1. This provides one additional constraint, in the context of
xorgensGP versus (serial) xorgens, on the parameter set {r, s, a, b, c, d} defining
a generator. Thus, we find the thread-level parallelism inherent to the xorgens
class of generators.

In the CUDA implementation of this generator we considered the approach
of producing independent subsequences. With this approach the problem of cre-
ating one sequence of random numbers of arbitrary length, L, is made parallel
by p processes by independently producing p subsequences of length L/p, and
gathering the results. With the block of threads architecture of the CUDA in-
terface and this technique, it is a logical and natural decision to allocate each
subsequence to a block within the grid of blocks. This can be achieved by pro-
viding each block with its own local copy of a state space via the shared memory
of an MP, and then using the thread-level parallelism for the threads within
this block. Thus, the local state space will represent the same generator, but
at different points within its period (which is sufficiently long that overlapping
sequences are extremely improbable).

Each generator is identical in that only one parameter set {r, s, a, b, c, d}
is used. An advantage of this is that the parameters are known at compile
time, allowing the compiler to make optimisations that would not be available
if the parameters were dynamically allocated, and thus known only at runtime.
This results in fewer registers being required by each thread. For the genera-
tor whose test results are given in §3, we used the parameters (r, s, a, b, c, d) =
(128, 65, 15, 14, 12, 17).

3 Results

We now present an evaluation on the results obtained in our comparison of the
existing GPU PRNG against our implementation of xorgensGP. All experiments
were performed on a NVIDIA GeForce GTX 480 and a single GPU on the
NVIDIA GeForce GTX 295 (which is a dual GPU device), using the CUDA 3.2
toolkit and drivers. Performance results are presented in Table 1, and qualitative
results in Table 2.

We first compared the memory footprint of each generator. This depends on
the algorithm defining the generator. The CURAND generator was determined
to have the smallest memory requirements of the three generators compared, and
the MTGP was found to have the greatest. The MTGP has the longest period
(211213 − 1), and the CURAND generator has the shortest period (2192 − 232).
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Table 1. Approximate memory footprints, periods and speed on two devices for 32-bit
generators.

Generator State-Space Period GTX 480 RN/s GTX 295 RN/s

xorgensGP 129 words 24128 17.7× 109 9.1× 109

MTGP 1024 words 211213 17.5× 109 10.7× 109

CURAND 6 words 2192 18.5× 109 7.1× 109

Next, we compared the random number throughput (RN/s) of each generator
on the two different devices. This was obtained by repeatedly generating 108

random numbers and timing the duration to produce the sequence of that length.
We found that the performance of each generator was roughly the same, with
no significant speed advantage for any generator. On the newer GTX 480, the
CURAND generator was the fastest, and the MTGP was the slowest. On the
older architecture of the GTX 295 the ordering was reversed: the CURAND
generator was the slowest and the MTGP was fastest. These results can be
explained in part by the fact that the CURAND generator was designed with
the current generation of “Fermi” cards like the GTX 480, and the MTGP was
designed and tested initially on a card very similar to the GTX 295. In any
event, the speed differences are small and implementation/platform-dependent.

Finally, to compare the quality of the sequences produced, each of the gener-
ators was subjected to the SmallCrush, Crush, and BigCrush batteries of tests
from the TestU01 Library. The xorgensGP generator did not fail any of the
tests in any of the benchmarks. Only the MTGP failed in the Crush benchmark,
where it failed two separate tests. This was expected as the generator is based
on the Mersenne Twister, and the tests are designed to expose the problem of
linearity over GF(2). The MTGP failed the corresponding, more rigorous tests
in BigCrush. Interestingly, the CURAND generator failed one of these two tests
in BigCrush.

Table 2. Tests failed in each standard TestU01 benchmark.

Generator SmallCrush Crush BigCrush

xorgensGP None None None
MTGP None #71,#72 #80,#81
CURAND None None #81
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4 Discussion

We briefly discuss the results of the statistical tests, along with some design
considerations for the xorgensGP generator.

CURAND fails one of the TestU01 tests. This test checks for linearity and ex-
poses this flaw in the Mersenne Twister. However, like the xorgensGP, CURAND
combines the output of an xorshift generator with a Weyl generator to avoid lin-
earity over GF(2), so it was expected to pass the test. The period 2192 − 232 of
the CURAND generator is much smaller than that of the other two generators.
The BigCrush test consumes approximately 238 random numbers, which is still
only a small fraction of the period.

A more probable explanation relates to the initialisation of the generators
at the block level. In xorgensGP each block is provided with consecutive seed
values (the id number of the block within the grid). Correlation between the
resulting subsequences is avoided by the method xorgens uses to initialise the
state space. It is unclear what steps CURAND takes in its initialisation.

The MTGP avoids this problem by providing each generator with different
parameter sets for values such as the shift amounts. In developing xorgensGP
this approach was also explored. However, it was found that the overhead of
managing the parameters increased the memory footprint of each generator and
consequently reduced the occupancy and performance of the generator, without
any noticeable improvement on the quality and so was not developed any further.

In conclusion, we presented a new PRNG xorgensGP for GPUs using CUDA.
We showed that it performs with comparable speed to existing solutions and
with better statistical qualities. The proposed generator has a period that is
sufficiently large for statistical purposes while not requiring too much state space,
allowing it to give good performance on different devices.
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