Introduction to Mersenne Twister Pseudorandom number generator

Qiao Zhou
June 30, 2016

Introduction

In this introductory article, I explain the algorithm behind the Mersenne Twister (MT) Pseudorandom number generator
(PRNG) designed by Nishimura and Matsumoto. The most common implementation of it uses an internal state of 624
words (integers) with word-length 32 bits. For a k-bit word length, MT generates uniform draws in the range of [0, 2% —1],
which can be translated to a [0,1) ranged uniformly distributed real number. As the name suggests, its period is given
by a Mersenne Prime in the form of M, = 2" — 1,n € N, which is 2'9937 — 1 in the MT19937 version. According
to [Wikipedia, the Mersenne Twister algorithm is based on a matrix linear recurrence over a finite binary field. The
algorithm is a twisted generalised feedback shift register of rational normal form, with state bit reflection and tempering.
Concretely, the algorithm works as follows:

1. An integer array of length n (n=624) is created to store the internal state of the MT generator;

2. A w-bit (w=32) word-length seed is input to the generator for state vector initialization. This seed is supplied to
g, ...,n_1 by setting xo to the seed value and subsequent x values through a recursion expression. This forms
the internal state for MT comprised of n values of w bits each. The first random realization the algorithm then
generates is based on x,.

3. Next, twisting is applied to the state and the next n values from z; is generated to move the generator to the next
state. Note that the first state (state 0) will not be used to generate any number, and the first random number is
generated based on state 1.

4. Next, the number extraction function (i.e., method genrandint32() as denoted in the original C implementation)
will be called. The algorithm will check for the current index ¢ in the length-n z; state array, and twist() will
be called every n numbers. Next, tempering transformation is applied before extracting the next number. After
tempering, the random number is returned and the index is incremented.

The formal technical details can be found in their original paper. The original C implementation can be retrieved from
mt19937ar.cl

Given the language of choice is Python, we examine the implementation details of MT under this language. As docu-
mented, Python’s basic randomization routine random() uses MT as the core generator, which produces 53-bit precision
floats and has a period of 219937 — 1 before repeating itself, and 623-dimensional equidistribution property is assured.
The underlying fast implementation in C is based on the 2002 version of MT19937. MT is extensively tested and passes
numerous statistical randomness tests, including the Diehard tests.

Concretely, 2002-version mt19937ar.c has versions [0,1],[0,1),[0,1),(0,1) (32-bit precision), and [0,1) with 53-bit precision.
For the 32-bit precision version, the discretization is 2732 (i.e., 1/N, where N = 232). While under the IEEE 754 double-
precision binary floating-point format (64-bit floating point value), the number representation has a significand precision
of 53 bits. The discretization is thus 27°% (i.e., 1/N, where N = 253) ' and MT is able to create double precision values
in the closed interval 0,1 —2753] with increment 253, However, this is not the same as the recurrence period N, which
is 219937 _ 1 in MT19937 version. One may wrongly argue that given 32-bit random integers can only range from 0 to
232 — 1, its recurrence period can only be as long as 232 for the 32 bit precision version. However, one should make the
distinction between the output random number and the internal state of the PRNG as they are different concepts. The
number can be the same after 232 generations, but the internal state will only repeat with recurrence period 219937 — 1.
In fact, MT internally stores the large state with 19968 = 32 x 624 bits, which is sufficient for the period of 219937 — 1.
By default, the 53-bit double-precision version is used by Python, which is achieved by concatenating two 32-bit random
integers (with assigned weights) and them dividing them by 2% to result in a normalized random number on [0, 1).


https://en.wikipedia.org/wiki/Mersenne_Twister
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/ARTICLES/mt.pdf
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/CODES/mt19937ar.c

