Padding Oracle Attack on PKCS#1 v1.5: Can
Non-standard Implementation Act as a Shelter?

Si Gao, Hua Chen, and Limin Fan

Trusted Computing and Information Assurance Laboratory,
Institute of Software, Chinese Academy of Sciences
{gaosi,chenhua,fanlimin}@tca.iscas.ac.cn

Abstract. In the past decade, Padding Oracle Attacks (POAs) have
become a major threat to PKCS#1 v1.5. Although the updated scheme
(OAEP) has solved this problem, PKCS#1 v1.5 is still widely deployed in
various real-life applications. Among these applications, it is not hard to
find that some implementations do not follow PKCS#1 v1.5 step-by-step.
Some of these non-standard implementations provide different padding
oracles, which causes standard POA to fail. In this paper, we show that
although these implementations can avoid the threat of standard POA,
they may still be vulnerable to POA in some way. Our study mainly
focuses on two cases of non-standard implementations. The first one only
performs the “0x00 separator” check in the decryption process; while the
other one does not check for the second byte. Although standard POA
cannot be directly applied, we can still build efficient padding oracle
attacks on these implementations. Moreover, we give the mathematical
analysis of the correctness and performance of our attacks. Experiments
show that, one of our attacks only takes about 13 000 oracle calls to
crack a valid ciphertext under a 1024-bit RSA key, which is even more
efficient than attacks on standard PKCS#1 v1.5 implementation. We
hope our work could serve as a warning for security engineers: secure
implementation requires joint efforts from all participants, rather than
simple implementation tricks.

1 Introduction

PKCS#1 is the standard for the implementation of public-key cryptography
based on the RSA algorithm. The current version v2.2 |1}, published by RSA in
2012, contains two encryption schemes: RSAES PKCS1 v1.5 and RSAES OAEP.
For simplicity’s sake, we denote them as PKCS#1 v1.5 and OAEP respectively.
OAERP is required to be supported for new applications, while PKCS#1 v1.5 is
included only for compatibility with existing applications.

Padding Oracle Attack. In the past decade, Padding Oracle Attacks (POAs)
[2] have become a major threat to PKCS#1 v1.5. Padding Oracle Attack is
a type of chosen ciphertext attack, which takes advantage of whether crypto-
graphic operation is successfully executed. Usually, we assume the attacker can

M. Abdalla, C. Nita-Rotaru, and R. Dahab (Eds.): CANS 2013, LNCS 8257, pp. 39-p6] 2013.
© Springer International Publishing Switzerland 2013

40 S. Gao, H. Chen, and L. Fan

trick an honest user to decrypt the ciphertext he chose. In the decryption pro-
cess, a format check is performed after decryption. Although the attacker does
not have access to the decryption result, he can detect whether the ciphertext he
chose passes the format check. We call such decryption process a “Padding Or-
acle” (PO) [3]. By collecting thousands of PO’s responses, the original message
can be extracted. In the past decade, POAs have drawn major attention from
both symmetric and asymmetric cryptography research. In symmetric cryptog-
raphy, CBC Padding Oracle has been used to build plaintext-recovery attacks on
various network protocols [449]. In asymmetric cryptography, PKCS#1 v1.5 is
the main target. The first POA on PKCS#1 v1.5, published by Bleichenbacher
in 1998 |10], took about 1 million PO calls to recover a 1024-bit RSA plaintext.
Bleichenbacher’s attack has been extensively studied ever since, applied to SSL
[11], PIN encryption in EMV [12], USB token |2] and XML encryption |13]. Re-
cently, Bardou, Focardi, Kawamoto, Simionato, Steel and Tsay claim that using
their improved version of Bleichenbacher’s attack, a wrapped secret key can be
recovered from RSA Securid 800 in only 13 minutes [2].

Other Attacks on PKCS#1 v1.5. Other non-POA attacks also exist for
PKCS#1 v1.5: Coron, Joye, Naccache and Paillier proposed two brilliant attacks
in 2000 [14], which can efficiently recover the plaintext, if the public exponent
is small enough, or most message bits are zeros. Bauer, Coron, Naccache, Ti-
bouchi and Vergnaud proposed a broadcast attack [15], which could reveal the
identical plaintext when the public exponent is small. However, none of these
attacks works for the commonly used public exponent 65537 with a random
message. Bauer et al. also proposed a reliable distinguish attack [15]. Using one
PO query, it predicts which of two chosen plaintexts corresponds to a challenge
ciphertext. Although we only focus on full-plaintext-recovery attacks without
requirements on exponent or plaintext, whether POAs can combine with these
non-POA attacks may be an interesting topic for further study.

Does PKCS#1 v1.5 Still Matters in Today’s Application? To avoid
POA, RSA introduced OAEP as the new recommended encoding scheme in
PKCS+#1 v2.0. However, according to ECRYPT’s “Yearly Report on Algorithms
and Keysizes”, PKCS#1 v1.5 is still widely deployed in today’s application
((W)TLS, S/MME, XML, JSON, etc.) |16, [17]. Take USB tokens for instance:
most tokens today support PKCS#1 v1.5, while only a few can support OAEP
[2]. In software deployment, OAEP is widely supported today; while for back-
ward compatibility reasons, PKCS#1 v1.5 is still mandatory. Jager and Paterson
suggest that in such scenario |17], the attacker can trick the honest user to use
legacy scheme (PKCS#1 v1.5) , and undermine the security of the up-to-date
scheme (OAEP).

Motivation. Despite the fact that detailed implementation instructions are
given in [1], implementations do not always follow them. For efficiency or other
reasons, they tend to simplify the standard decryption process as long as valid
ciphertexts can be decrypted correctly. For instance, in most of Microsoft’s Cryp-
tographic Service Providers (CSP), PKCS #1 v1.5 decryption does not check

