
Padding Oracle Attacks

We discuss in this addendum padding oracle attacks, which are a limited form of CCA attacks that
have proven incredibly damaging in practical settings. At a high level, the problem is as follows.
Encryption schemes are almost always defined via a Pad-then-Encrypt methodology. First, a
plaintext is padding according to some padding rules captured by a padding function Pad. Then
an encryption scheme SE is applied to the result. During decryption, one first applies the decryption
algorithm of SE is used, and then the resulting string is checked to see if it is consistent with the
padding rules of Pad. If not, a special symbol is returned (here ⊥) and the ciphertext is rejected.

In practice, implementors often have made it so that padding errors are reported in a manner
distinguishable from other types of decryption errors. That means that an attacker can send a
(chosen) ciphertext to a party with the secret key, and observe whether that ciphertext had valid
padding or not. Here we develop attacks based on this observation. We focus on CBC$ mode since
this seems the most vulnerable to such padding oracle attacks (POAs).

0.1 Pad-then-Encrypt

Let D = ({0, 1}n)+ be the set of all strings of length a multiple of n. Let SE = (K, E ,D) be a
symmetric encryption algorithm with message space D. Examples are CBC$ and CTR$. A padding
function Pad: {0, 1}∗ → D determines how to unambiguously map arbitrary bit strings to a string
in D. We assume an inverse function Unpad: D → ({0, 1}∗ ∪ {⊥}). Both must be efficiently
computable. Then the Pad-then-Encrypt scheme PT E = (K,PT E .E ,PT E .D) associated to SE
and Pad has the same key generation algorithm as SE and the following encryption and decryption
algorithms.

Alg PT E .EK(M)
X ← Pad(M)
Ret EK(X)

Alg PT E .DK(C)
X ← DK(C)
If X = ⊥ then Return ⊥
Ret Unpad(X)

For schemes like CBC$ for which D never returns ⊥, we have that PT E .D returning ⊥ indicates
a padding error. Assume that our target message space only includes messages that are a multiple
of 8 bits (1 byte), that n is a multiple of 8, and that n ≤ 255·8. For any number p ∈ [0 .. 255] let 〈p〉8
represent the 8-bit string containing some canonical encoding of the number p. Let 〉Y 〈8 represent
the number encoded (under the same encoding) in the 8-bit string Y . Let X ′ ‖ Y ← LastByte(X)
be the function that parses X as X ′ ‖ Y with |Y | = 8. A slightly simplified version of the padding
mechanism used by TLS is the following:

1

2

Game POASE

procedure Initialize

K $←K ; M∗ $←{0, 1}n
Return EK(M∗)
procedure CheckPad(C)
M ← DK(C)
If M 6= ⊥ then Return 1
Return 0
procedure Finalize(M)
Return (M∗ = M)

Figure 1: POA attack game.

Alg Pad(M)
p← (n + (|M | mod n))/8
If p = 0 then p = n/8
Y ← 〈p〉8
Ret M ‖ Y ‖ Y ‖ · · · ‖ Y

Alg Unpad(X)
X1 ‖ Y1 ← LastByte(X)
p←〉Y1〈8
If p > n/8 then Return ⊥
If p = 1 then Return X1

For i = 2 to p do
Xi ‖ Yi ← LastByte(Xi−1)
If Yi 6= Y1 then Return ⊥

Ret Xp

where the number of Y ’s repeated in the string returned by Pad is exactly p.
For the remainder we let PT E denote the Pad-then-CBC$ construction. This uses the just-given

padding functions and CBC$ mode.

0.2 A Notion of Padding Oracle Security

We define a game POASE in Fig. 1 to formalize POAs. In line with our example of CBC$, the game
assumes that {0, 1}n is a subset of the domain of SE . The game requires an adversary to recover
a message M∗ chosen uniformly given only its encryption and access to an oracle that tells the
adversary whether decryption is successful or not. A POA adversary expects input a ciphertext,
can query CheckPad a number of times (adaptively), and outputs a string in {0, 1}n. We define
POA advantage by

Advpoa
SE (A) = Pr

[
POAA

SE ⇒ true
]

.

0.3 POA against Pad-then-CBC$

We prove the following claim.

Claim 0.3.1 Let PT E be the Pad-then-CBC$ encryption scheme as defined above. Then there
exists a POA adversary A such that

Advpoa
PT E(A) = 1

and A makes 512 + 256 · 15 queries to its CheckPad.

Bellare and Rogaway 3

adversary A(C∗)
Parse C∗ as n-bit strings C∗[0], C∗[1], C∗[2]
Parse C∗[0] as 8-bit strings C∗

16, . . . , C
∗
1

X1 ← FindFirstByte(C∗
1 , C∗[1])

For j = 2 to 16 do
Xj ← FindOtherByte(j, C∗

16, . . . , C
∗
1 , C∗[1], Xj−1, . . . , X1)

Return X16 ‖ · · · ‖X1

subroutine FindFirstByte(C∗
1 , C∗[1])

For i = 0 to 255 do
R $←{0, 1}n−8

R′ ← R⊕ 1n−8

C[0]← R ‖ 〈i〉8
C ′[0]← R′ ‖ 〈i〉8
d← CheckPad(C[0] ‖ C∗[1])
d′ ← CheckPad(C ′[0] ‖ C∗[1])
If (d = 1 ∧ d′ = 1) then

Ret C∗
1 ⊕ 〈i〉8 ⊕ 〈1〉8

subroutine FindOtherByte(j, C∗
16, . . . , C

∗
1 , C∗[1], Xj−1, . . . , X1)

For i = 0 to 255 do
R $←{0, 1}n−8j

C[0]← R ‖ 〈i〉8 ‖ (Xj−1 ⊕ 〈j〉8 + C∗
j−1) ‖ · · · ‖ (X1 ⊕ 〈j〉8 ⊕ C∗

1)
d← CheckPad(C[0] ‖ C∗[1])
If (d = 1) then

Ret C∗
j ⊕ 〈i〉8 ⊕ 〈j〉8

Figure 2: POA adversary against Pad-then-CBC$.

Here we give a POA adversary against PT E when SE is CBC$ and n = 16 · 8 (as in the case
of AES). See Fig. 2. Adversary A attempts to recover one byte at a time from the ciphertext by
making cleverly constructed ciphertexts that are queried to the CheckPad oracle. The goal is to
use the padding rules of Unpad in order to infer what the byte is.

We will justify that

Advpoa
PT E(A) = Pr

[
PT EA

PT E ⇒ true
]

= 1 .

Let

M∗ = M∗
16 ‖ · · · ‖M∗

1 ,

Z∗[0] = Z∗
16 ‖ · · · ‖ Z∗

1 = E−1
K (C∗[1]) ,

C[0] = C16 ‖ · · · ‖ C1

Yk = Z∗
k ⊕ Ck for 1 ≤ k ≤ 16 ,

C ′[0] = C ′
16 ‖ · · · ‖ C ′

1 and

Y ′
k = Z∗

k ⊕ C ′
k for 1 ≤ k ≤ 16 .

We use subscripts to index the byte-offset within a block. Thus, the first definition labels the 16 1-
byte strings of the challenge message A is attempting to find; the second labels the 16 1-byte strings

4

of E−1
K (C∗[1]); the third labels the 16 1-byte strings that make up each of the 256 · 16 blocks C[0]

used in the CheckPad queries; and the fourth labels the values generated during a CheckPad
query after running DK(C[0]C∗[1]), but before applying Unpad. The last two definitions there label
the values generated during CheckPad on the C ′[0]C∗[1] used in FindFirstByte.

We split the analysis into first showing that FindFirstByte always returns the correct value
X1 = M∗

1 . Then we will show that when X1 = M∗
1 the subroutine FindOtherByte always succeeds.

The routine FindFirstByte in each iteration prepares two ciphertexts C[0]‖C∗[1] and C ′[0]‖C∗[1]
such that the first n − 8 bits of C[0] and C ′[0] are different, but the last 8 bits are the same (an
encoding of the iteration counter i). It calls CheckPad twice, one for each ciphertext. We have
that d = d′ = 1 iff Y1 = Y ′

1 = 〈1〉8. Note that Y1 = Y ′
1 because the first byte of C[0] and C ′[0] is

always the same and C∗[1] is used in both queries. Morever, since we try all values of i, it must
be that for one iteration we have that Y1 = 〈1〉8. To see why other values for Y1 could not lead to
d = d′ = 1, consider if Y1 6= 〈1〉8. Then necessarily d′ = 0, since our choice of the first n− 8 bits of
C[0] and C ′[0] ensures then that Y ′

2 6= Y2. In turn, Unpad will return ⊥ if Y1 6= 〈1〉8 and Y1 6= Y ′
2 .

Now consider the first run of FindOtherByte, with X1 = M∗
1 . Then

FindOtherByte(2, C∗
16, . . . , C

∗
1 , C∗[1], X1)

sets C[0] to be a random n− 16 bit string followed by an 8-bit encoding of i followed by

X1 ⊕ 〈2〉8 ⊕ C∗
1 = M∗

1 ⊕ 〈2〉8 ⊕ C∗
1 = Z∗

1 ⊕ 〈2〉8 .

During decryption, then, in the CheckPad oracle, we have that

Y1 = (Z∗
1 ⊕ 〈2〉8)⊕ Z∗

1 = 〈2〉8
which means that Unpad will read a first byte that encodes 2. This means that Unpad will return
true exactly if the second value Y2 = 〈2〉8. This occurs only when

〈2〉8 = 〈i〉8 ⊕ Z∗
2 = 〈i〉8 ⊕M∗

2 ⊕ C∗
2 .

Thus here Unpad only returns one in the case that M∗
2 = C∗

2 ⊕ 〈i〉8 ⊕ 〈2〉8, which is exactly
what is returned by FindOtherByte. Moreover, since FindOtherByte tries all 256 values of i it is
guaranteed to find the exact byte M∗

2 . A simple inductive argument justifies that the rest of the
values X3, . . . , X16 are likewise correct.

