
Return of the Hidden Number Problem
A Widespread and Novel Key Extraction Attack on ECDSA and DSA

Keegan Ryan

NCC Group
keegan.ryan@nccgroup.com

Abstract. Side channels have long been recognized as a threat to the security of
cryptographic applications. Implementations can unintentionally leak secret informa-
tion through many channels, such as microarchitectural state changes in processors,
changes in power consumption, or electromagnetic radiation. As a result of these
threats, many implementations have been hardened to defend against these attacks.
Despite these mitigations, this work presents a novel side-channel attack against
ECDSA and DSA. The attack targets a common implementation pattern that is
found in many cryptographic libraries. In fact, about half of the libraries that were
tested exhibited the vulnerable pattern. This pattern is exploited in a full proof
of concept attack against OpenSSL, demonstrating that it is possible to extract a
256-bit ECDSA private key using a simple cache attack after observing only a few
thousand signatures. The target of this attack is a previously unexplored part of
(EC)DSA signature generation, which explains why mitigations are lacking and the
issue is so widespread. Finally, estimates are provided for the minimum number
of signatures needed to perform the attack, and countermeasures are suggested to
protect against this attack.

Keywords: side-channel attacks · lattice attacks · key extraction · hidden number
problem · (EC)DSA cryptanalysis

1 Introduction
Cryptographic systems are incredibly important for the security of modern technology.
They are used to protect traffic on the internet [DR08, YL06] as well as banking information
and government documents [NSS+17]. As cryptographic keys are used to protect higher
value targets, it becomes even more critical that the keys are protected from compromise.
Whenever a private key or a secret key is used, the owner risks having information about
that key leak to their adversary, so cryptographic systems must defend against this threat.

There are countless ways that information can leak from a privileged context to an
unprivileged one, and these are known as side channels. Side channels can arise from
the timing differences caused by memory caches [OST06, Per05] or differences in branch
prediction after running sensitive code [AKS07, EPAG16]. The recent Spectre [KGG+18]
and Meltdown [LSG+18] vulnerabilities could be used to leak sensitive information past
privilege boundaries and do so by abusing speculative execution and out-of-order execution
respectively. Side-channel attacks are not just limited to microarchitectural state either:
electronic devices can leak information via electrical signals [GPP+16a] or even the acoustic
emanations of vibrating electrical components [GST14].

Cryptographic algorithms are often implemented with these attacks in mind, but the
threat of a side channel inadvertently exposing cryptographic information is constant.

Licensed under Creative Commons License CC-BY 4.0.
IACR Transactions on Cryptographic Hardware and Embedded Systems ISSN 2569-2925,
Vol. 2019, No. 1, pp. 146–168
DOI:10.13154/tches.v2019.i1.146-168

mailto:keegan.ryan@nccgroup.com
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.13154/tches.v2019.i1.146-168

Keegan Ryan 147

1.1 Contributions
In this work, a new side-channel attack against ECDSA, DSA, and other ElGamal style
signatures is identified. This attack uses a previously known analysis method to recover
the private key, but it targets a previously unexplored source of leakage: a single modular
reduction in the signature calculation. We also explore two modes of the attack. The first
is a chosen-plaintext attack, where the attacker is allowed to select the message being
signed, and the second is a known-plaintext attack where the attacker has knowledge of
the message being signed. Success probabilities are provided for different parameters of
both modes of attack. This issue is shown to be widespread and to enable the extraction
of keys from several common libraries. A proof-of-concept attack on a recent version of
OpenSSL is used to demonstrate the feasibility of using a cache attack to recover a private
key, and finally, possible countermeasures to this attack are explored.

1.2 Attack Scenario
This work makes a few assumptions about the environment being attacked. In a vulnerable
environment, the victim uses a private key to create several signatures. The attacker
observes the resulting signatures and knows the messages being signed. Additionally, the
attacker needs to be able to use a side channel to determine information about a particular
modular reduction in the signature process. This sort of setup reflects realistic attack
scenarios.

Consider the case of a cloud hosted server using TLS and an ECDSA private key [DR08].
A passive attacker can observe a client’s TLS handshake with the server, receiving an
ECDSA signature in the ServerKeyExchange message. This signature includes randomness
from the client and the server, as well as the server Diffie-Hellman parameters. All of these
are transmitted in the clear, so the passive attacker has access to all the necessary values
except the side-channel information, which may be obtained in multiple ways. If the attacker
can also get assigned to a co-located virtual machine in the cloud environment [RTSS09,
İGI+16], they can recover side-channel information about the victim by performing a
Prime+Probe [OST06] attack. The attacker hopes to recover the server private key and
then impersonate the server.

Similarly, consider the case of an attacker with a low-privileged account on an SSH server.
Like TLS, the SSH Transport Layer Protocol [YL06] may use ECDSA to authenticate
traffic, but unlike TLS, the signature is over a value based on a Diffie-Hellman shared
secret, so a passive adversary would be unable to compute the message being signed and
mount the attack. The low-privileged attacker, however, can actively initiate a number of
SSH connections, derive the shared secret, and compute the message that was signed by
the server. The attacker can simultaneously use the low-privileged account to mount a
side-channel attack against the SSH daemon process and leak the necessary information.
The attacker then recovers the ECDSA key and is free to impersonate the host and capture
the credentials of a more privileged user.

Note that in both of these scenarios, the message being signed was not in the attacker’s
control. During signing, this message is transformed into an integer using a cryptographic
hash, so this integer is uniformly distributed over the possible range. This corresponds to
the known-plaintext attack. However, in some cases the attacker has more influence over
the signed message. Consider a smart card or trusted execution environment that signs a
message of the user’s choosing; here, the attacker can select a message that, when hashed,
results in an integer that will leak the desired information through the side channel. Since
only a few uppermost bits of the integer need to have a certain value for this attack, the
attacker can easily brute force an input message that will hash to an appropriate value.

The signatures must also be randomized in this attack scenario. This is the case for
non-deterministic ECDSA and DSA, but it turns out that the attack is also likely to

148 Return of the Hidden Number Problem

succeed in the deterministic case [Por13]. Non-deterministic ECDSA and DSA require a
randomly generated value, but in deterministic ECDSA and DSA this value is derived
from the signed message. As long as the signed messages are distinct, the derived value
should be indistinguishable from random choice. This means that in the chosen-plaintext
attack, the attacker may simply brute force a new input message so the hashed message
still has the desired form, but the derived value is completely different. The attacker
could also reuse the same message so the same value is derived, and then collect multiple
measurements to reduce the effect of side-channel noise. In the known-plaintext attack,
it is likely the message varies anyway since there is not much utility in a system that
computes the exact same signature every single time.

These requirements apply to many systems. The signatures can be gathered passively
or actively, and the attacker may take advantage of a wide variety of side channels to leak
the desired information. Both the chosen-plaintext and known-plaintext attacks share a
similar analysis, and only a few thousand signatures are needed to recover the private
key. Though it is impossible to enumerate all vulnerable scenarios, it is clear that the risk
extends beyond TLS and SSH servers, and many systems using ECDSA or DSA keys are
potentially susceptible to this key-extraction attack.

1.3 Related Work
This work is similar in nature to many recent publications. There is a long history of
side channels being used to compromise the integrity of a cryptographic library. RSA key
generation in OpenSSL was recently targeted with a Flush+Reload attack in [AGM+18],
and a Prime+Probe attack was used in [DDME+18] to target the EPID protocol in Intel’s
SGX quoting enclave. Flush+Reload was also used in [GB16] to target OpenSSL’s modular
inversion routine for ECDSA.

These recent attacks target varied sources of leakage, but historically, attacks frequently
targeted modular exponentiation or scalar multiplication routines. Such issues affected
both RSA [BBG+17] and Ed25519 [GVY17] in Libgcrypt, and the latter attack also
demonstrated that non-constant modular reduction can be used as a source of leakage.
OpenSSL has been impacted by timing and cache side-channel attacks several times, with
vulnerabilities found in both modular exponentiation [YGH17] and scalar multiplication
routines [FWC16, vdPSY15, BvdPSY14, YB14, BT11, BH09].

Other side channels have been explored as well. Power analysis was used in [GPP+16b]
to target ECDSA scalar multiplication on mobile devices, and against smart cards in
[DMHMP13]. Branch prediction side channels have been used to target OpenSSL’s imple-
mentation of modular exponentiation [AKS06, AKS07] and modular inversion [AGS07].

As a whole, these previously published attacks demonstrate that side-channel attacks
pose a real threat to cryptographic implementations; these attacks were frequently capable
of recovering private keys through a variety of methods. This new work follows in the
well-established footsteps of this previous research.

2 Mathematical Background
Throughout this work we will use the following notation. Addition, multiplication, and
division have their usual meaning when done over the reals. a−1 is used to represent
modular inversion in Fq where the modulus q is large, prime, and clear from context.
Logarithms are performed with base 2, and [a, b] represents the range of integers no less
than a and no greater than b.

The reduction of a value modulo q into the range [0, q − 1] is represented by b·cq. The
absolute value modulo q, denoted |·|q, is found by reducing the argument into the range
[− q2 ,

q
2], then taking the absolute value.

Keegan Ryan 149

Finally, we use MSBl,q(x) to denote knowledge about the l most significant bits of x.
That is, use MSBl,q(x) to denote an integer u satisfying

|x− u|q < q/2l+1.

This notation is both convenient and intuitive, since when l = 0, all values u ∈ [0, q − 1]
satisfy this inequality, when l = 1, only about the q/2 values closest to x satisfy the
inequality, and so on.

2.1 ECDSA and DSA
ECDSA and DSA are two similar NIST standardized signature schemes [KSD13]. Both
are based on the ElGamal signature scheme [ElG85] and consist of a large prime q with bit
length N = dlog qe. The signature process also requires a function F : [0, q− 1]→ [0, q− 1]
that is difficult to invert. In (EC)DSA, this function uses exponentiation over a finite
abelian group and relies on the difficulty of the (Elliptic Curve) Discrete Logarithm problem
to make the signature secure. Unlike previous work, the details of F are not necessary to
understand this new attack.

The (EC)DSA signature scheme also uses a hash function Hash : {0, 1}∗ → {0, 1}outlen
to convert an input message to an output of fixed bit length, which can be encoded as an
integer. The choice of hash function depends on bit length N , but it is selected so that
the hash output has enough bits of security to match the desired level of security of the
signature [Bar16].

When signing a message, the signer, in possession of private key x ∈ [1, q− 1], performs
the following steps:

1. Calculate m = leftmostmin(N, outlen) bits of Hash(msg)

2. Generate nonce k uniformly from [1, q − 1].

3. Calculate r = F (k). If r = 0, return to step 2.

4. Calculate s =
⌊
k−1(m+ r ∗ x)

⌋
q
. If s = 0, return to step 2.

5. Return signature (r, s).

For the purposes of this paper, the details of the corresponding verification algorithm
are also unimportant.

When outlen ≥ N and q ≈ 2N , then m is roughly uniformly distributed in [0, q − 1].
This is the case for many common choices of q and Hash, including the use of SHA-
256 with NIST Curve P-256 and SHA-384 with Curve P-384 found in NSA Suite B
Cryptography [SH12] and the recommended curve and hash associations found in RFC
5480 [THP+09]. However, there are still some valid combinations where outlen < N . In
these cases, m is not uniformly distributed in [0, q− 1]. Take for example the standardized
curves over binary fields, whose orders have bit lengths that do not match the output size
of common hash functions. Consider Curve B-283, which has an order of length 282 bits
and therefore a security strength of 128 bits. SHA-256 is a suitable hash function at this
security level, and so messages signed with this valid combination will have

m < 2256 < 2282 ≈ q

and so the uppermost 26 bits of m will always be zero.
These combinations of curves and hash functions are not frequently used, and so the

remainder of this work makes the simplifying assumption that m is uniformly distributed
in [0, q − 1]. This makes the attack easier to analyze while still being applicable to many
important cryptographic libraries. Although not as common as the use of Curve P-256

150 Return of the Hidden Number Problem

or Curve P-384, the use of Curve P-521 with SHA-512 is notable since it also breaks the
uniformity assumption, but it turns out there is an easy modification that can make the
attack succeed in this case. This is explored in Section 4.

2.2 The Hidden Number Problem
Though not originally developed for the purpose of cryptanalysis [BV96], an important
tool for understanding cryptanalytic attacks on ECDSA and DSA is known as the Hidden
Number Problem (HNP). There are many similar constructions of the HNP, but here we
use the more general formulation and solution algorithm as found in [BvdPSY14].

The HNP poses the problem of recovering an unknown scalar in a prime field when
only partial information is known about multiples of the scalar. Formally in the HNP,
one has knowledge of a number of multipliers t1, ..., td ∈ F∗q for known prime q. For each
sample i, one also knows MSBli,q(btiαcq) for some fixed but unknown α ∈ [1, q − 1]. The
goal is to recover hidden number α. The HNP can identically be expressed as a system of
inequalities:

|btiαcq − ui|q < q/2li+1 for all i ∈ {1, ..., d}.

Boneh and Venkatesan recognized in [BV96] that the HNP has much in common with
the study of lattices. If we let b1 = (t1, ..., td, 1) be a basis vector of a lattice, then vector
αb1 = (αt1, ..., αtd, α) will be relatively close to vector (u1, ..., ud, 0) after some multiple
of q is subtracted from each component of αb1. The concept of subtracting a multiple
of q is encoded for each dimension by another basis vector bi+1 = (..., 0, q, 0, ...). Thus
given an instance of the HNP, we can construct a lattice basis so that one of the vectors
is close to (u1, ..., ud, 0) and at a distance in each dimension of no more than q/2li+1.
Recovering hidden number α is therefore possible once this vector is found. In fact, this
so-called Closest Vector Problem (CVP) can be solved efficiently using the LLL lattice
basis reduction algorithm [LLL82] and Babai’s nearest plane algorithm [Bab86]. [BV96]
additionally showed that when the ti are uniformly and independently drawn, the li are
sufficiently large, and enough HNP inequalities including α are known, a probabilistic
algorithm exists to solve the HNP in polynomial time.

This choice of lattice basis vectors is not the only option, however, and there have
been several different representations based on the same idea as [BV96] (See, for example
[NS02, NS03]). One drawback of the original construction is that all li are identical, since
the CVP solver weighs all dimensions equally, and cannot incorporate information that
the bound on some HNP inequalities might be tighter than others. The representation in
[BvdPSY14] has the added advantage of not requiring that all li are the same, and it does
so by scaling the dimensions of the lattice proportionally to the inverse of the bounds.

In their construction, which we use here, we construct lattice L(B) from the basis
vectors given by the rows of matrix B:

B =

2l1+1q 0

. . .
...

2ld+1q 0
2l1+1t1 . . . 2ld+1td 1

 .
We also set vector u = (2l1+1u1, ..., 2ld+1ud, 0). As before, note that there exists some
vector x ∈ Zd+1 such that xB = (2l1+1 bt1αcq , ..., 2ld+1 btdαcq , α), and this lattice vector
is close to vector u as guaranteed by the HNP inequalities. We hope that solving the CVP
with lattice L(B) and vector u will yield lattice vector xB, since the last coordinate is the
hidden value α.

Babai’s nearest plane algorithm is not the only way to solve the CVP. In fact, it is
possible to use what is called the embedding strategy [NS00, Won15] to reduce an instance

Keegan Ryan 151

of the CVP to one of the Shortest Vector Problem (SVP). The general embedding strategy
for lattice L(B) and vector u is to construct a new lattice L(B′) from the rows of matrix

B′ =
[
B 0
u q

]
and running a lattice basis reduction algorithm on L(B′). The second smallest vector in
the reduced basis is often of the form (xB − u,−q), and once again the last coordinate of
xB − u is α.

Other lattice basis reduction algorithms besides LLL may be used. Although it does
not provide the same polynomial time guarantees as LLL, BKZ [SE91] with a block size of
15 to 20 has performed well on instances of the HNP [BvdPSY14]. An improved version
of BKZ, called BKZ 2.0 [CN11], implements even more features such as advanced pruning.

The lattice-based method to solving the HNP is practical, efficient, and easy to
implement. It requires relatively few HNP inequalities to correctly recover the hidden
number, runs in polynomial time under certain parameters, and is likely to give the correct
answer. However, this method struggles when the number of bits li per inequality is not
large enough [NS02], and the method is not very resilient to errors. Fortunately, the use of
lattices is not the only practical way to solve the HNP. Bleichenbacher’s solution to the
HNP, as documented in [DMHMP13], uses exponential sums to detect the influence of
small biases. Bleichenbacher’s approach is more tolerant of collection errors and can recover
the hidden number when only a small amount of information is leaked per inequality, but
this comes at the cost of requiring many more samples than the lattice method. As long
as it is possible to pose a cryptanalytic problem as an instance of the HNP, the tools exist
to find the solution.

2.3 Prior Attacks on ECDSA and DSA
The use of the HNP as a tool in a cryptanalytic attack against ECDSA and DSA imple-
mentations dates back to the work of Howgrave-Graham and Smart [HGS01]. Their attack
assumes that, in addition to knowing the signature values, an attacker knows a proportion
of the bits in nonce ki for each of several signatures. This knowledge is encoded into an
instance of the HNP, and solving yields the secret private key x.

To see how this works, assume that the attacker collects d signatures (ri, si) and knows
MSBli,q(ki) for i ∈ {1, ..., d}. There are many ways the attacker can gain this information
about ki. For example, the information may leak through a side channel [FWC16, vdPSY15,
BvdPSY14, YB14, BT11, BH09] or be induced via an injected fault [NNTW05] that clears
known bits. Using the equations for ECDSA and DSA signatures, the attacker’s knowledge
can be reformulated to the following (dropping index i for simplicity).

u = MSBl,q(k)
q/2l+1 > |k − u|

=
∣∣∣⌊s−1(m+ rx)

⌋
q
− u
∣∣∣
q

=
∣∣∣∣⌊⌊s−1r

⌋
q
∗ x
⌋
q
−
⌊
u− s−1m

⌋
q

∣∣∣∣
q

This gives a single HNP inequality, and collection of many signature samples yields more
inequalities, giving an instance of the HNP. Solving the HNP yields hidden number x,
from which new signatures may be forged.

Other formulations exist where the attacker has knowledge of a block of contiguous bits
in the middle of k or a combination of most significant and least significant bits [HGS01].

152 Return of the Hidden Number Problem

This method can even be applied when non-contiguous groups of bits are known [HR07],
but these require more HNP inequalities to be collected for the problem to be solved.

3 Software Implementations
Though there are many ways to implement the algorithm in Subsection 2.1 and compute
ECDSA and DSA signatures, a common one is presented in Algorithm 1. Many helper
functions are needed to fully implement these operations, but for brevity, only the Mod
and Sign functions are shown here. This is sufficient to demonstrate the relevant parts of
the implementation and to identify two implementation patterns that, if present, indicate
that the implementation is susceptible to the key extraction attack.

Algorithm 1 Create (EC)DSA Signature
1: function Mod(a, q) . Return the value of a reduced modulo q
2: if a < q then
3: return a
4: else
5: quotient, remainder ← DivRem(a, q) . Get remainder after dividing by q
6: return remainder

7: function Sign(msg, x, q) . Compute a signature over msg using private key x
8: m← Hash(msg)
9: m←Mod(m, q)

10: k ← RandomInteger(1, q − 1)
11: ki← Inv(k, q)
12: r ← F(k)
13: if r = 0 then
14: return error . Unlikely to ever be reached.
15: rx←Mul(r, x)
16: rx←Mod(rx, q)
17: sum← Add(m, rx)
18: sum←Mod(sum, q)
19: s←Mul(ki, sum)
20: s←Mod(s, q)
21: if s = 0 then
22: return error . Unlikely to ever be reached.
23: return (r, s)

Two things are important to note here. First, Mod does not run in constant time. If
the argument being reduced is already in the range [0, q − 1], this function returns early
without calling DivRem. If a side channel reveals whether DivRem was called by this
function, then the attacker learns information about argument a. Even though many of the
analyzed (EC)DSA implementations do not follow this pattern exactly, most include some
logic so the Mod function returns early if the argument is already reduced. A minority of
implementations are written so the Mod function executes in constant time, regardless of
input.

Secondly, observe the modular reduction on line 16. This ensures that the product rx
has been reduced into the range [0, q−1] prior to addition withm. In some implementations,
this reduction before addition, or less frequently the reduction following addition, is omitted.

Several common open source implementations of the ECDSA and DSA signing al-
gorithms were analyzed to observe which implementation pattern was followed. If the

Keegan Ryan 153

Table 1: Cryptographic implementations of (EC)DSA signatures. The table examines
several popular cryptographic libraries to see if they follow the vulnerable pattern. If
modular reduction both precedes and follows the addition of m and the modular reduction
routine is not constant time, the entry is marked as a “Yes.” If the product rx or the sum
m+ rx is not reduced, then the entry is marked as “NR” because it is not vulnerable to
this attack, but information may still be leaking during arithmetic operations involving x.
“No” means the arithmetic operations are constant time, and “N/A” means that algorithm
is not implemented. Finally, the version number reflects the version of the library prior
to disclosure of this vulnerability to the affected vendors. In response to this disclosure,
the affected vendors took steps to mitigate the issue. CryptLib, which explicitly excludes
side-channel attacks from its threat model, chose not to patch.

Library Version Tested ECDSA DSA
CryptLib [Gut] 3.4.4 Yes Yes
LibreSSL [liba] 2.7.3 Yes Yes

Mozilla NSS [Moz] 3.37 Yes Yes
Botan [Llo] 2.6.0 Yes NR

OpenSSL [opea] 1.1.0h and 1.0.2o Yes NR
WolfCrypt [Wol] 3.14.0 Yes NR
Libgcrypt [Gnu] 1.8.2 Yes NR

LibTomCrypt [libc] 1.18.1 Yes NR
OpenJDK Libsunec [Opeb] jdk10 777356696811 Yes N/A

MatrixSSL [mat] 3.9.5 Yes N/A
BoringSSL [Goo] 9f9c938a No Yes

BouncyCastle (C#) [bou] 1.8.2 NR NR
BouncyCastle (Java) [bou] 1.60 NR NR

Crypto++ [cry] 7.0.0 NR NR
Golang crypto/tls [gol] go1.10.3 NR NR

C#/Mono [csm] 5.12.0 NR N/A
mbed TLS [mbe] 2.9.0 NR N/A

Nettle [Möl] 3.4 No NR
BearSSL [Por] 0.5 No N/A

Trezor Crypto [Tre] dba23617 No N/A
Libsecp256k1 [libb] 1e6f1f5a No N/A

NaCl [BLS] 20110221 N/A N/A

Mod function leaks range information about the argument and the product rx is reduced,
the implementation is probably vulnerable to the attack. Due to the sheer number of
potentially affected libraries, implementations were analyzed via static review of source
code. However, to demonstrate that the attack is possible under such conditions, a full
proof of concept was developed for one of the implementations, described in Subsection 5.1.
The results of the analysis are shown in Table 1.

4 Cryptanalysis
As is hinted at in the previous section, the new key extraction attack targets information
leaked by non-constant time modular reduction in the computation of signature component
s. Specifically, the attack targets the modular reduction on line 18 in Algorithm 1. This
reduction follows the addition of m to brxcq. Of course, both arguments of the addition
have been reduced into the range [0, q − 1], so therefore m+ brxcq ∈ [0, 2(q − 1)]. Within
this range, the side-channel leakage in Mod thus reveals if m+ brxcq ∈ [0, q − 1].

154 Return of the Hidden Number Problem

The possible values can be constrained further, since Sign does not return a signature
unless r and s are nonzero. Since r 6= 0, brxcq ∈ [1, q − 1], and since s 6= 0, m+ brxcq /∈
{0, q}.

Assume the side channel perfectly reveals the truth value of m+ brxcq ∈ [0, q − 1]. If
this is true, then the attacker concludes

m+ brxcq ∈ [0, q − 1]
⇒ brxcq ∈ [−m, q −m− 1] ∩ [1, q − 1] = [1, q −m− 1]

⇒ brxcq −
q −m

2 ∈ [1− q −m
2 ,

q −m
2 − 1]

⇒
∣∣∣∣brxcq − q −m

2

∣∣∣∣
q

<
q −m

2

and gains an HNP inequality for hidden number x. Similarly, if the side channel reveals
that m+ brxcq /∈ [0, q − 1], then the attacker concludes

m+ brxcq /∈ [0, q − 1]
⇒ m+ brxcq ∈ [q + 1, 2(q − 1)]
⇒ brxcq ∈ [q −m+ 1, 2q − 2−m] ∩ [0, q − 1] = [q −m+ 1, q − 1]
⇒ brxcq ∈ [q −m+ 1, q − 1]
⇒ b(q − r)xcq ∈ [1,m− 1]

⇒ b(q − r)xcq −
m

2 ∈ [1− m

2 ,
m

2 − 1]

⇒
∣∣∣b(q − r)xcq − m

2

∣∣∣
q
<
m

2 .

Since m, r, and q are all known by the attacker, solving the HNP with these inequalities
reveals x, the private key. The attacker can easily verify if this is the correct private key
by comparing it to the known public key.

Intuitively, when m is large and m + brxcq ∈ [0, q − 1], brxcq must be one of a
relatively small number of values, so therefore x must be one of only a few possibilities.
Information from additional signatures further constrains the possible values of x until only
one possibility remains. We represent these constraints as an instance of the HNP in order
to solve for x. Some of these constraints will have a loose bound and not provide much
information about x, so some signatures will be discarded, and only the more informative
constraints are kept.

The derived inequalities imply scale factors of 2l+1 = 2q/(q −m) and 2l+1 = 2q/m.
Though prior approaches have used l to represent the number of leaked bits, our approach
does not assume l to be integral. The motivation given in Subsection 2.2 does not require
the scaling factors to be powers of two, so we do not constrain ourselves to these values.
However, computation involving matrix B is more feasible when the entries are integer
values, so the scale factor is rounded down to the closest integer, as are the entries of u.

In practice, the side channel may not be perfectly accurate. The attacker processes the
side-channel data and guesses the truth value of m+ brxcq ∈ [0, q− 1], but this processing
may suffer from false positives or false negatives. The lattice approach used to solve the
HNP is not resilient to errors, so an incorrect guess at this stage prevents the analysis
from being successful.

To surmount this difficulty, the attacker must design the side-channel processing to
have either a low false positive rate or a low false negative rate. Often the attacker can
choose between one or the other but cannot have both. Thus if the false negative rate is
low, any negative result from the processing step is likely to be a true negative (that is,

Keegan Ryan 155

m+ brxcq /∈ [0, q − 1]), and the derived inequality can be included in the HNP. A positive
result may be either a true positive or false positive, and since the attacker does not wish
to risk an incorrect guess, the signature must be discarded. In order to minimize the
number of discarded false positives, the attacker also wishes to maximize the probability
that m + brxcq /∈ [0, q − 1] is correctly detected as a negative result. We represent this
probability with µ. While the error rate must be low for the attack to succeed, µ can take
any value, although the attack requires fewer signatures for larger values.

In this work, the error rate only needs to be low enough that the set of derived
inequalities is unlikely to contain any errors. The behavior of lattice-based methods in
the presence of erroneous HNP inequalities is explored in both [BT11] and [DDME+18],
and it is shown that the attacks can still succeed, albeit with reduced probability. The
proposed error handling methods of randomly selecting error-free subsets and manual
review of cache traces could be applied here as well to improve performance, but these
are not necessary in order to demonstrate a practical attack. We will therefore leave such
error handling optimizations to future work and simplify the attack analysis by making
the assumption that either the false positive or false negative rate is exactly zero.

For the remainder of this section, we shall assume the false negative rate is zero; that
is, all inequalities are of the form

∣∣∣b(q − r)xcq − m
2

∣∣∣
q
< m

2 . This makes it slightly easier
to describe the chosen-plaintext and known-plaintext attacks, and the derivation is not
substantially different when the false positive rate is zero.

4.1 Chosen-Plaintext Attack
In the chosen-plaintext variation, the attacker is able to choose the most significant bits
of m. There is a trade-off present for choosing a large or small m. The larger m is, the
more likely it is that m+ brxcq /∈ [0, q − 1] and the more likely it is that the attacker can
construct an inequality based on a given collected signature. However, a smaller m is a
tighter bound on the inequality, and so each inequality reveals more information about
x. Additionally, the lattice-based method to solving the HNP is less effective on looser
bounds. The attacker must take all of these into consideration when selecting the desired
m.

We may thus provide an estimate of how the number of signatures that need to be
observed scales with the attacker’s choice of m. Since r is independent between rounds
and approximately uniformly distributed, the values of brxcq are also independent and
roughly uniform. Each constraint for the attacker’s m thus provides about log q

m bits of
information about x. Since knowledge of each brxcq gives different information about
x, these bits are roughly independent. x has about log q bits in total, and so roughly

log q
log q−logm successfully collected samples are needed. The odds of a given signature yielding
a usable constraint is µm

q , giving the expected number of signatures to collect as about

q log q
µm(log q − logm) .

This simple and heuristic analysis suggests that the fewest signatures are needed when
m = q/e. This parameter is derived without any assumptions about the HNP solver
method and suggests what optimal attack performance might be. However, in practice,
HNP solvers carry additional constraints. For example, note that the lattice-based HNP
solver may have trouble since each sample contains less than 1.5 bits of information about
x, so it is likely that an attack that leaks slightly more information per sample will be
better. This value can be found through experimentation. A more sophisticated estimate
for lattice reduction could be derived [NT12], but configuring the probability of attack
success would still require some fine tuning via experimentation, and the analysis would
lose its applicability to generic HNP solvers. As can be seen from the practical experiments,

156 Return of the Hidden Number Problem

the more complicated analysis is not needed, as this simplified analysis is sufficient for our
purposes.

The chosen-plaintext attack also has an interesting application in the case of Curve
P-521 used with the SHA-512 hash function. Here, q is 521 bits, but m is at most 512
bits. Thus if the side channel reveals m+ brxcq ∈ [0, q − 1] with no false negatives, then
the chosen-plaintext attack can be used with m ≈ 2512 ≈ q/29. This gives an expected
number of required signatures of

q log q
µm(log q − logm) ≈

29 ∗ 521
µ(521− 512) ≈ 30000/µ.

This is still on the order of tens of thousands of signatures, so in many cases this attack
on P-521 is practical.

4.2 Known-Plaintext Attack

In the known-plaintext variation, the attacker is only able to observe m, not influence it.
The attack proceeds in much the same way as the chosen-plaintext attack, but the attacker
must decide which values of m to collect samples for and which to ignore. Similar to [BT11]
and [BvdPSY14], the attacker selects a threshold value mt. The attacker then collects
signatures until the attacker collects a sample where m < mt and m+ brxcq /∈ [0, q − 1].
The attacker adds the derived inequality and repeats the process until d inequalities have
been recovered. Finally, the attacker uses the lattice-based method to solve the HNP and
recover private key x.

There is once again a trade-off at play, since a smaller value of mt yields more
information about x in each sample, but a larger value of mt increases the odds that a
sample is collected.

We can once again estimate how many samples need to be collected as a function of
mt. The probability that m < mt, m+ brxcq /∈ [0, q− 1], and the side channel reveals this
information is approximately

P (m < mt and m+ brxcq /∈ [0, q − 1] and detected)
= µP (m < mt and m+ brxcq /∈ [0, q − 1])

= µ

mt−1∑
m′=0

1
q
P (m+ brxcq /∈ [0, q − 1]|m = m′)

= µ

mt−1∑
m′=0

m′

q2

≈ µm2
t

2q2 .

Since the conditional distribution of m is uniform in [0,mt − 1], the expected number of

Keegan Ryan 157

bits of information about x per sample is about

Em[− log m+ 1
q

] =
mt−1∑
m=0

−1
mt

log m+ 1
q

= − q

mt

mt∑
m=1

1
q

log m
q

≈ − q

mt

∫ mt/q

0
log xdx

= − q

mt

mt

q
(log mt

q
− log e)

= log eq

mt
.

Combining this with the odds of collecting a usable sample and the fact that about log q
bits of x must be recovered, the expected number of signatures to collect is approximately

2q2 log q
µm2

t log(eq/mt)
.

This is minimized when mt = q/
√
e, or when about 0.7 bits are leaked by each HNP

inequality. Once again, the lattice-based HNP solver may have issues with such values, so
the actual optimal value of mt is likely determined by what the solver is able to solve.

We may also perform the known-plaintext attack in the case of Curve P-521 and SHA-
512. Similar to the chosen-plaintext attack, we can set mt = 2512 ≈ q/29. Since m < mt

for all m, the expected number of samples does not quite follow the above derivation, and
is given by

2q log q
µmt log(eq/mt)

≈ 210 ∗ 521
µ(log e+ 9) ≈ 50000/µ.

Once again, the attack is still practical for Curve P-521, despite the mismatch between
the hash size and curve order.

5 Experimental Results
The attack consists of both a collection phase and an analysis phase, so two experiments
were performed to demonstrate the feasibility of the full attack. In the first experiment, the
collection phase was studied by examining OpenSSL 1.1.0g [opea] and using a Flush+Reload
attack [YF14] to determine the outcome of the modular reduction. This is used to give
probabilities describing the oracle behavior of an example implementation and to show
that a co-resident attacker can reliably use this side channel to perform an attack.

The second experiment explored the analysis phase by determining how the analysis
performs under different parameters. Rough estimates are given for the minimum number
of signatures needed for multiple common key sizes.

5.1 Attacking OpenSSL
In order to demonstrate the feasibility of the attack, a Flush+Reload attack was performed
on a recent version of OpenSSL. The attack targets version 1.1.0g, which is shipped with
Ubuntu 18.04, the current long term support (LTS) release, and the attack was performed
on an Intel i7-6600u CPU.

Flush+Reload is a side-channel attack where the attacker and the victim share the
same memory. The attacker repeatedly flushes particular addresses from the cache and

158 Return of the Hidden Number Problem

monitors the time to reload the address. If the memory at the address remains evicted, the
access time is high, but if the victim accesses the memory between the flush and the reload,
the memory access time is low. Due to the copy-on-write behavior of the Linux kernel, an
unprivileged attacker process maps the same shared library as a privileged victim process,
so the attacker is capable of detecting when the victim loads particular code at the 64 byte
L1 instruction cache line granularity. The Flush+Reload attack is implemented by the
Mastik library [Yar16], which was used for this attack.

The experiment targeted the libcrypto.so.1.11 shared library, which contains the
ECDSA signing code of the OpenSSL library. Five offsets within the library were monitored:

1. 0x0f4e70 - Entry point of ECDSA_do_sign_ex

2. 0x0f4582 - Call to BN_mod_add_quick when computing m+ brxcq
3. 0x0a4b9f - End of BN_usub, called from BN_mod_add_quick when the sum of argu-

ments exceed the modulus.

4. 0x0a4b42 - Middle of BN_usub

5. 0x0ed180 - End of ECDSA_SIG_free.

The first offset was monitored in order to detect when the signature process began so the
attacker could collect Flush+Reload samples until the last offset was reached. The second
offset was used to detect when BN_mod_add_quick was called, which happened close to the
end of the trace, and to observe if the third or fourth offsets were triggered at that point
as well. Two offsets within BN_usub were monitored because this had the effect of reducing
noise and giving the cleanest signal. By running this collection process many times, it
was possible to analyze how the side channel behaves when m+ brxcq ∈ [0, q − 1]. The
collection was run for 100000 samples using a known private key and randomly generated
m, and the following results were observed:

3rd offset hit? 4th offset hit? Sum in [0, q − 1] Sum not in [0, q − 1]
y y 243 46861
y n 1261 16
n y 11811 428
n n 33927 4

The remaining 5449 samples did not follow the expected pattern of the first, second, or
fifth offset, and are excluded from the table. From these results it is clear that this side
channel may be used as an low false positive oracle: when neither the third nor fourth
offsets were hit, m+ brxcq ∈ [0, q− 1] with observed frequency 1− 4/33927 ≈ 99.99%. We
can also estimate µ = Prob(3rd and 4th offsets not hit | m+ brxcq ∈ [0, q − 1]) ≈ 0.68.

Using this side channel, the full attack can be tested. A privileged process was set up
that listened to a localhost port, signed incoming messages using libcrypto.so and a
256-bit ECDSA private key, and returned the signatures. The attacker was implemented
in an unprivileged process and was set up to perform the chosen-plaintext attack with
m = q/25. The attacker triggered signatures while performing the Flush+Reload attack
and repeated until 100 usable samples were collected. Then FPLLL [dt16], a library which
implements lattice operations, was used to perform the BKZ reduction with a block size
of 20. Based on µ, it should take 4706 signatures to collect enough samples for the HNP.
In fact, over a sample size of 30 runs, it took on average 4465 signatures. For this test,
the parameters were chosen arbitrarily so that the lattice reduction succeeds. The attack
generalizes to other parameters as well, including larger key sizes or different values of l.
The next section explores which parameters to choose for best performance.

1SHA-256 a13c42ae2e12dc0cb9aba3133fff0db2e8dfa69d2ca5f4e399d4be00c1e14677

Keegan Ryan 159

5.2 Solving the Hidden Number Problem
In addition to demonstrating the practicality of the side channel, it is important to give
parameters for which the attack performs well. While it is easy to determine the expected
number of signatures one needs to gather before having enough HNP inequalities, it is less
easy to determine how many inequalities are needed. Estimates for this number are derived
in Section 4, but this is done after making several simplifying assumptions and does not
capture the actual process of solving the HNP. This data is collected by simulating the
side-channel attack and running the lattice-based HNP solver several times.

Both the chosen-plaintext and known-plaintext attacks were tested for orders of size
256 and 384, the sizes recommended by NSA Suite B Cryptography. 160 bit and 521 bit
orders were also considered in order to capture the behavior at both allowed extremes. For
each test case, a random prime order of the selected size was generated, and a parameter
l was chosen, roughly corresponding to the number of bits leaked per signature. In the
chosen-plaintext attack l was used to set m = q/2l, and in the known-plaintext attack
it set mt = q/2l. To determine how many HNP inequalities to include, which sets the
dimension of the lattice, an overhead factor f was used. Thus for the chosen-plaintext
attack,

⌈
f log q
l

⌉
HNP inequalities are generated, and for the known-plaintext attack, this

value is
⌈
f log q
l+log e

⌉
. Based on the estimate, the attack is expected to fail for f < 1 and

expected to succeed for f > 1. This formed the instance of the HNP.
A reduction method was chosen at random to attempt to solve the instance of the

HNP. Specifically, after using the embedding strategy to encode the HNP as a basis for a
lattice, the FPLLL library used its implementation of either LLL or BKZ to reduce the
lattice. Block sizes of 10, 15, 20, and 25 were used for BKZ2. After reduction completed or
a timeout of five minutes was reached, the best guess was retrieved and compared to the
actual x used to generate the data. The time taken and outcome were also both recorded.
Experiments were performed on an Amazon EC2 C5.18xlarge instance.

In [BvdPSY14], analysis time is used when considering the performance of a set of
parameters, but in this work, minimizing the number of signatures is prioritized. This
objective is inspired by which systems an attacker may wish to target with this attack.
If the goal is to recover some long lived server key or smart card secret, the attacker
can probably tolerate a couple minutes of offline computation. However, each additional
signature extends the time of the collection phase and increases the odds that the attack
will be detected. Since collection time scales linearly with the number of signatures,
this approach of minimizing signatures is likely to optimize attacks in all but the most
time-sensitive situations.

The experiments reveal that the estimates derived in Section 4 are accurate in most
cases. Figure 1 demonstrates this, as it is clear reduction fails for f < 1 and succeeds for
f > 1.3. There is a transition region between 1 and 1.3 where the probability of success is
in between 0 and 1. Assuming the understanding of the information leaked per sample is
correct, an ideal reduction algorithm would quickly transition between low probability of
success and high, since as soon as there is enough information, the ideal algorithm would
be able to solve the problem. However, LLL and BKZ are not ideal algorithms, and the
observed transition is more gradual.

This slope between success and failure becomes more flattened as l decreases, as can
be seen in Figure 2. For l = 3, the curve appears completely flat, indicating that there is a
minimum number of bits that must leak for reduction to be successful. Since the expected
number of signatures is exponential in l, the optimal value will be when l is as low as
possible, but not so low that reduction is unlikely for reasonable values of f .

Next, consider how the attack performs for different reduction algorithms. In Figure 3
2In the case of the 521 bit modulus, FPLLL failed to ever terminate when using BKZ. This could be

due to a bug in the reduction library, so the BKZ results for that modulus size are omitted

160 Return of the Hidden Number Problem

Figure 1: Performance of LLL reduction algorithm when solving the HNP for a 521 bit
modulus. Reduction fails for f < 1 and succeeds for f > 1.3, which aligns with expectations
of the estimate of the number of inequalities needed.

Table 2: Approximate parameters for the minimum signatures required. These values
performed the best of the combinations that were tested, and they gave above a 90%
success rate. Under these parameters, the reduction step reliably finished in under five
minutes. Here, BKZ-25 is shorthand for BKZ reduction algorithm with a block size of 25.

Key size (bits) Chosen-Plaintext Attack Known-Plaintext Attack
160 l = 3, BKZ-25 530 l = 2, BKZ-25 1800
256 l = 4, BKZ-25 1300 l = 2, BKZ-25 3600
384 l = 5, BKZ-25 3000 l = 3, BKZ-20 21000
521 l = 9, LLL 40000 l = 9, LLL 64000

it can be seen that as the BKZ block size increases, so does the success ratio. These results
indicate that increasing block size improves the reduction algorithm’s ability to recover the
hidden number from a limited number of samples; however, increasing block size comes at
the cost of time. This was especially the case for tests of the 384 bit modulus, since the
larger matrices timed out past the five minute cutoff when using a block size of 25.

Putting all this together provides the following approximate minimum bounds for a
90% success rate, given in Table 2. In general, the chosen-plaintext attack requires fewer
signatures total, but the known-plaintext attack can use a smaller value of l. These signature
counts are comparable to previous work regarding practical attacks on TLS servers [BT11,
İGI+16, Won15] and smart cards [DMHMP13], and so this work demonstrates an attack
that is both practical and powerful for a wide range of key sizes.

6 Countermeasures
We examine two countermeasures to mitigate this particular attack. The first approach
is to use constant time arithmetic operations when computing s from m, r, x, and k.
This will eliminate timing-based side channels from leaking sensitive state at this stage.

Keegan Ryan 161

Figure 2: Performance of BKZ reduction algorithm when solving the HNP for a 256 bit
modulus. This data is for the chosen-plaintext attack, and the BKZ block size is 15. For
each value of l, the reduction fails for f < 1. However, for f > 1, the odds of success rise
at different rates.

Figure 3: Performance of various reduction algorithm when solving the HNP for a 256
bit modulus. This data is for the chosen-plaintext attack with l = 4. As the block size
increases, the minimum overhead ratio needed for good performance decreases.

162 Return of the Hidden Number Problem

Although only replacing the modular addition with a constant time alternative suffices
to prevent the particular attack identified in this work, a similar attack may apply to
non-constant time modular multiplication. If a function leaked the approximate size of
the reduced product or factors, an attacker could mount a similar HNP-style attack using
knowledge of small brxcq or bm+ rxcq. As the signature computation is dominated by
the point multiplication to compute r, the final stage of computing s is a minority of
the total time taken. The cost of replacing these operations with their constant time
alternatives is unlikely to incur a significant penalty on signature time. However, this
approach only attempts to mitigate timing and control-flow based side channels, which may
not be sufficient to protect against all attacks, such as power analysis. For many libraries
which were built around general purpose multiple precision integer libraries, migrating to
a constant time implementation may also be difficult.

Another approach is to use blinding to reduce the usefulness of side-channel information.
A similar method of blinding can be used to harden RSA signature generation, elliptic curve
point multiplication, and modular exponentiation. For this approach, the signer selects a
random b ∈ [1, q − 1]. The signer then computes bbrxcq and bbmcq. After adding these
two values together, the signer multiplies by b−1, giving a value of

⌊
b−1(bm+ brx)

⌋
q

=
bm+ rxcq. The remainder of signature computation proceeds as normal. Assuming b is
kept secret and the attacker has access to the same side channel, the attacker will learn the
truth value of bbmcq + bbrxcq ∈ [0, q − 1]. However, this exposes no information about x.

To see this, first consider the case m = 0. bbmcq + bbrxcq = bbrxcq ∈ [0, q − 1],
regardless of the secret key, so no information is leaked. Next, we will show that when
m 6= 0, changing the sign of b changes the truth value of bbmcq + bbrxcq ∈ [0, q − 1]. Thus
since [1, q− 1] is the union of disjoint (b, b−bcq) pairs, exactly half of the values in [1, q− 1]
make the statement true, and the other half make it false, regardless of x, m, or r. Thus
the side channel reveals no information about the private key. Take b ∈ [1, q− 1] such that
bbmcq + bbrxcq ∈ [0, q − 1] is true. Therefore,

bbmcq + bbrxcq ∈ [0, q − 1]
⇔ bbmcq + bbrxcq < q

⇔ q − b−bmcq + q − b−brxcq < q

⇔ −b−bmcq − b−brxcq < −q
⇔ b−bmcq + b−brxcq > q

⇔ b−bmcq + b−brxcq /∈ [0, q − 1]

with the last step relying on the fact that since s 6= 0, b−bmcq + b−brxcq 6= q.
Although it is tempting to conclude from this proof that blinding is a sufficient mitigation

to protect against this class of attack, there are some caveats. The proof assumes that the
only information that leaks is whether or not the sum exceeds q, but the non-constant
time implementation of modular reduction may leak extra information that invalidates
the mitigation. It is also possible that information about b may leak through another
side channel, such as during the modular inversion of b, again reducing the effectiveness
of the countermeasure. While blinding stops the basic attack, it is no guarantee that
non-constant time code cannot be exploited in other ways. More sophisticated exploitation,
however, is not the focus of this work.

7 Conclusion
This work only explores a small aspect of this issue, and there are many interesting areas of
exploration that remain. One such question is whether this vulnerability can be exploited

Keegan Ryan 163

through timing data alone. The non-constant implementation of modular reduction does
introduce a slight difference δ in timing between samples that have m+ brxcq ∈ [0, q − 1]
and those that do not, but recall that this attack requires either a low false positive rate
or a low false negative rate to succeed. If we let τ be the random variable representing
the time it takes to create a signature where m+ brxcq ∈ [0, q − 1], then we can model
the total time taken as T = τ + δI. Here, I is the indicator variable which equals 1 if
m+ brxcq /∈ [0, q − 1] is true, and 0 otherwise. If τ has high variability, then it will be
difficult to correctly guess the outcome of the reduction based on T alone.

One potential solution to this problem is to find situations where τ has sufficiently low
variance. One of the major sources of variation in a modern computer is cache behavior,
because even though the same instructions are being executed, their duration depends
on processor state, which varies from run to run. However, it is possible that embedded
systems without caches may have sufficiently low variation that a pure timing attack is
possible on these platforms. Somewhat ironically, for security reasons, common (EC)DSA
implementations attempt to make scalar multiplication constant time with respect to
secret data, which reduces variance even further.

Another potential solution is to use a more error-tolerant approach to solving the HNP,
such as Bleichenbacher’s solution [DMHMP13]. In this approach, the problem is posed as
a set of pairs (ci, hi) for which the set {bhi + cixcq}di=1 is biased towards the values 0 and
q. The remainder of the attack recovers x from this bias. Consider (with a slight abuse of
notation) the distribution of

{⌊
−q4 −

q

2I + rix
⌋
q

}d
i=1

.

As it turns out, this distribution is also biased towards 0 and q. Intuitively, this is because
a large brixcq is more likely to have mi + brixcq /∈ [0, q− 1]. Thus we expect that the pairs
(− q

2δTi, ri) will similarly exhibit a consistent bias, although this bias will be incredibly
small due to the bias of τ . It is beyond the capability of current algorithms to apply
Bleichenbacher’s solution to such a small bias [TTA18], but development of error-tolerant
solutions to the HNP suggests the possibility that a passive adversary monitoring a large
number of signatures could recover the private key from timing data alone.

We have only considered a small number of contexts in which this issue might be
exploited. There are countless other side channels besides Flush+Reload that could leak
the desired information, including branch predictor side channels [ERAG+18, AKS07] or
power analysis [KJJ99]. This work identifies a common but flawed implementation pattern
that, when paired with a sometimes simple side channel, can be exploited to disclose the
private key in an attack that is both simple and practical. There are likely several other
unidentified systems that are similarly affected by this issue and for which key compromise
is possible. Finally, this work reinforces the importance of constant time implementations
and hardening against side channels, as it emphasizes and demonstrates the dangers that
even a small leak can pose to a cryptographic system.

Acknowledgments

I would like to thank Thomas Pornin for his insightful review of early drafts, and I would
also like to thank David Wong, Andy Grant, Audrey Erpelding, and the anonymous
reviewers for their helpful feedback on this paper. Their thoughtful reviews have helped
shape the work into its current state, and it would not be the same without them.

164 Return of the Hidden Number Problem

References
[AGM+18] Alejandro Cabrera Aldaya, Cesar Pereida García, Luis Manuel, Alvarez

Tapia, and Billy Bob Brumley. Cache-timing attacks on RSA key generation.
IACR Cryptology ePrint Archive, Report 2018/367, 2018.

[AGS07] Onur Acıiçmez, Shay Gueron, and Jean-Pierre Seifert. New branch prediction
vulnerabilities in OpenSSL and necessary software countermeasures. In
Steven D. Galbraith, editor, Cryptography and Coding, pages 185–203, Berlin,
Heidelberg, 2007. Springer Berlin Heidelberg.

[AKS06] Onur Acıiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. Predicting secret
keys via branch prediction. In Masayuki Abe, editor, Topics in Cryptology
– CT-RSA 2007, pages 225–242, Berlin, Heidelberg, 2006. Springer Berlin
Heidelberg.

[AKS07] Onur Aciiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. On the power of
simple branch prediction analysis. In Proceedings of the 2nd ACM Symposium
on Information, Computer and Communications Security, ASIACCS ’07,
pages 312–320, New York, NY, USA, 2007. ACM.

[Bab86] L. Babai. On Lovász’ lattice reduction and the nearest lattice point problem.
Combinatorica, 6(1):1–13, Mar 1986.

[Bar16] Elaine Barker. NIST special publication 800-57 part 1 revision 4, recommen-
dation for key management part 1: General. NIST, 2016.

[BBG+17] Daniel J. Bernstein, Joachim Breitner, Daniel Genkin, Leon Groot Bruin-
derink, Nadia Heninger, Tanja Lange, Christine van Vredendaal, and Yuval
Yarom. Sliding right into disaster: Left-to-right sliding windows leak. In
Wieland Fischer and Naofumi Homma, editors, Cryptographic Hardware
and Embedded Systems – CHES 2017, pages 555–576, Cham, 2017. Springer
International Publishing.

[BH09] Billy Bob Brumley and Risto M. Hakala. Cache-timing template attacks. In
Mitsuru Matsui, editor, Advances in Cryptology – ASIACRYPT 2009, pages
667–684, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[BLS] Daniel J Bernstein, Tanja Lange, and Peter Schwabe. NaCl: Networking
and cryptography library. https://nacl.cr.yp.to/.

[bou] BouncyCastle. https://www.bouncycastle.org/.

[BT11] Billy Bob Brumley and Nicola Tuveri. Remote timing attacks are still
practical. In Vijay Atluri and Claudia Diaz, editors, Computer Security –
ESORICS 2011, pages 355–371, Berlin, Heidelberg, 2011. Springer Berlin
Heidelberg.

[BV96] Dan Boneh and Ramarathnam Venkatesan. Hardness of computing the most
significant bits of secret keys in Diffie-Hellman and related schemes. In Neal
Koblitz, editor, Advances in Cryptology — CRYPTO ’96, pages 129–142,
Berlin, Heidelberg, 1996. Springer Berlin Heidelberg.

[BvdPSY14] Naomi Benger, Joop van de Pol, Nigel P. Smart, and Yuval Yarom. “Ooh
aah... just a little bit”: A small amount of side channel can go a long way.
In Lejla Batina and Matthew Robshaw, editors, Cryptographic Hardware
and Embedded Systems – CHES 2014, pages 75–92, Berlin, Heidelberg, 2014.
Springer Berlin Heidelberg.

https://nacl.cr.yp.to/
https://www.bouncycastle.org/

Keegan Ryan 165

[CN11] Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better lattice security
estimates. In Dong Hoon Lee and Xiaoyun Wang, editors, Advances in Cryp-
tology – ASIACRYPT 2011, pages 1–20, Berlin, Heidelberg, 2011. Springer
Berlin Heidelberg.

[cry] Crypto++. https://www.cryptopp.com/.

[csm] C# mono. https://www.mono-project.com/.

[DDME+18] Fergus Dall, Gabrielle De Micheli, Thomas Eisenbarth, Daniel Genkin, Na-
dia Heninger, Ahmad Moghimi, and Yuval Yarom. CacheQuote: Efficiently
recovering long-term secrets of SGX EPID via cache attacks. IACR Transac-
tions on Cryptographic Hardware and Embedded Systems, 2018(2):171–191,
2018.

[DMHMP13] Elke De Mulder, Michael Hutter, Mark E. Marson, and Peter Pearson. Using
Bleichenbacher’s solution to the hidden number problem to attack nonce
leaks in 384-bit ECDSA. In Guido Bertoni and Jean-Sébastien Coron, editors,
Cryptographic Hardware and Embedded Systems - CHES 2013, pages 435–452,
Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[DR08] Tim Dierks and Eric Rescorla. RFC 5246: The transport layer security
(TLS) protocol. The Internet Engineering Task Force, 2008.

[dt16] The FPLLL development team. fplll, a lattice reduction library. Available
at https://github.com/fplll/fplll, 2016.

[ElG85] Taher ElGamal. a Public Key Cryptosystem and a Signature Scheme Based
on Discrete Logarithms. Lncs, 196:10–18, 1985.

[EPAG16] D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh. Jump over ASLR: At-
tacking branch predictors to bypass ASLR. In 2016 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 1–13, Oct
2016.

[ERAG+18] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, ECE, and Dmitry
Ponomarev. Branchscope: A new side-channel attack on directional branch
predictor. In Proceedings of the Twenty-Third International Conference on
Architectural Support for Programming Languages and Operating Systems,
ASPLOS ’18, pages 693–707, New York, NY, USA, 2018. ACM.

[FWC16] Shuqin Fan, Wenbo Wang, and Qingfeng Cheng. Attacking OpenSSL Imple-
mentation of ECDSA with a Few Signatures. Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security - CCS’16,
pages 1505–1515, 2016.

[GB16] Cesar Pereida García and Billy Bob Brumley. Constant-time callees with
variable-time callers. Cryptology ePrint Archive, Report 2016/1195, 2016.
https://eprint.iacr.org/2016/1195.

[Gnu] GnuPG. Libgcrypt. https://www.gnupg.org/software/libgcrypt/
index.html.

[gol] Go crypto/tls. https://golang.org/pkg/crypto/tls/.

[Goo] Google. BoringSSL. https://boringssl.googlesource.com/boringssl/.

https://www.cryptopp.com/
https://www.mono-project.com/
https://github.com/fplll/fplll
https://eprint.iacr.org/2016/1195
https://www.gnupg.org/software/libgcrypt/index.html
https://www.gnupg.org/software/libgcrypt/index.html
https://golang.org/pkg/crypto/tls/
https://boringssl.googlesource.com/boringssl/

166 Return of the Hidden Number Problem

[GPP+16a] Daniel Genkin, Lev Pachmanov, Itamar Pipman, Adi Shamir, and Eran
Tromer. Physical key extraction attacks on PCs. Commun. ACM, 59(6):70–
79, May 2016.

[GPP+16b] Daniel Genkin, Lev Pachmanov, Itamar Pipman, Eran Tromer, and Yuval
Yarom. ECDSA key extraction from mobile devices via nonintrusive physical
side channels. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’16, pages 1626–1638, New
York, NY, USA, 2016. ACM.

[GST14] Daniel Genkin, Adi Shamir, and Eran Tromer. RSA key extraction via low-
bandwidth acoustic cryptanalysis. In Juan A. Garay and Rosario Gennaro,
editors, Advances in Cryptology – CRYPTO 2014, pages 444–461, Berlin,
Heidelberg, 2014. Springer Berlin Heidelberg.

[Gut] Peter Gutmann. Cryptlib. https://www.cryptlib.com/.

[GVY17] Daniel Genkin, Luke Valenta, and Yuval Yarom. May the fourth be with you:
A microarchitectural side channel attack on several real-world applications
of Curve25519. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’17, pages 845–858, New York,
NY, USA, 2017. ACM.

[HGS01] N. A. Howgrave-Graham and N. P. Smart. Lattice attacks on digital signature
schemes. Designs, Codes and Cryptography, 23(3):283–290, Aug 2001.

[HR07] Martin Hlaváč and Tomáš Rosa. Extended hidden number problem and
its cryptanalytic applications. In Eli Biham and Amr M. Youssef, editors,
Selected Areas in Cryptography, pages 114–133, Berlin, Heidelberg, 2007.
Springer Berlin Heidelberg.

[İGI+16] Mehmet Sinan İnci, Berk Gulmezoglu, Gorka Irazoqui, Thomas Eisenbarth,
and Berk Sunar. Cache attacks enable bulk key recovery on the cloud. In
Benedikt Gierlichs and Axel Y. Poschmann, editors, Cryptographic Hardware
and Embedded Systems – CHES 2016, pages 368–388, Berlin, Heidelberg,
2016. Springer Berlin Heidelberg.

[KGG+18] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg,
Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval
Yarom. Spectre attacks: Exploiting speculative execution. ArXiv e-prints,
January 2018.

[KJJ99] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In Michael Wiener, editor, Advances in Cryptology — CRYPTO’ 99, pages
388–397, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

[KSD13] Cameron F. Kerry, Acting Secretary, and Charles Romine Director. FIPS
PUB 186-4 Federal Information Processing Standards publication Digital
Signature Standard (DSS), 2013.

[liba] LibreSSL. http://www.libressl.org/.

[libb] Libsecp256k1. https://github.com/bitcoin-core/secp256k1.

[libc] LibTomCrypt. https://www.libtom.net/LibTomCrypt/.

[LLL82] A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring polynomials with
rational coefficients. Mathematische Annalen, 261(4):515–534, Dec 1982.

https://www.cryptlib.com/
http://www.libressl.org/
https://github.com/bitcoin-core/secp256k1
https://www.libtom.net/LibTomCrypt/

Keegan Ryan 167

[Llo] Jack Lloyd. Botan. https://botan.randombit.net/.

[LSG+18] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike
Hamburg. Meltdown. ArXiv e-prints, January 2018.

[mat] MatrixSSL. http://www.matrixssl.org/.

[mbe] mbed TLS. https://tls.mbed.org/.

[Möl] Niels Möller. Nettle. http://www.lysator.liu.se/~nisse/nettle/.

[Moz] Mozilla. Network Security Services. https://developer.mozilla.org/
en-US/docs/Mozilla/Projects/NSS.

[NNTW05] David Naccache, Phong Q. Nguyên, Michael Tunstall, and Claire Whelan.
Experimenting with faults, lattices and the DSA. In Serge Vaudenay, editor,
Public Key Cryptography - PKC 2005, pages 16–28, Berlin, Heidelberg, 2005.
Springer Berlin Heidelberg.

[NS00] Phong Q. Nguyen and Jacques Stern. Lattice reduction in cryptology: An
update. In Wieb Bosma, editor, Algorithmic Number Theory, pages 85–112,
Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.

[NS02] Nguyen and Shparlinski. The insecurity of the digital signature algorithm
with partially known nonces. Journal of Cryptology, 15(3):151–176, Jun
2002.

[NS03] Phong Q. Nguyen and Igor E. Shparlinski. The insecurity of the elliptic
curve digital signature algorithm with partially known nonces. Designs,
Codes and Cryptography, 30(2):201–217, Sep 2003.

[NSS+17] Matus Nemec, Marek Sys, Petr Svenda, Dusan Klinec, and Vashek Matyas.
The return of Coppersmith’s attack: Practical factorization of widely used
RSA moduli. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’17, pages 1631–1648, New
York, NY, USA, 2017. ACM.

[NT12] Phong Q. Nguyen and Mehdi Tibouchi. Lattice-Based Fault Attacks on
Signatures, pages 201–220. Springer Berlin Heidelberg, Berlin, Heidelberg,
2012.

[opea] OpenSSL. https://www.openssl.org.

[Opeb] OpenJDK. Libsunec. http://hg.openjdk.java.net/jdk10/jdk10/jdk/
file/777356696811/src/jdk.crypto.ec/share/native/libsunec.

[OST06] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and coun-
termeasures: The case of AES. In David Pointcheval, editor, Topics in
Cryptology – CT-RSA 2006, pages 1–20, Berlin, Heidelberg, 2006. Springer
Berlin Heidelberg.

[Per05] Colin Percival. Cache missing for fun and profit. 2005.

[Por] Thomas Pornin. BearSSL. https://bearssl.org/.

[Por13] Thomas Pornin. RFC 6979: Deterministic usage of the digital signature
algorithm (DSA) and elliptic curve digital signature algorithm (ECDSA).
The Internet Engineering Task Force, 2013.

https://botan.randombit.net/
http://www.matrixssl.org/
https://tls.mbed.org/
http://www.lysator.liu.se/~nisse/nettle/
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS
https://www.openssl.org
http://hg.openjdk.java.net/jdk10/jdk10/jdk/file/777356696811/src/jdk.crypto.ec/share/native/libsunec
http://hg.openjdk.java.net/jdk10/jdk10/jdk/file/777356696811/src/jdk.crypto.ec/share/native/libsunec
https://bearssl.org/

168 Return of the Hidden Number Problem

[RTSS09] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage.
Hey, you, get off of my cloud: Exploring information leakage in third-party
compute clouds. In Proceedings of the 16th ACM Conference on Computer
and Communications Security, CCS ’09, pages 199–212, New York, NY,
USA, 2009. ACM.

[SE91] Claus-Peter Schnorr and M. Euchner. Lattice basis reduction: Improved
practical algorithms and solving subset sum problems. Math. Program.,
66:181–199, 1991.

[SH12] M Salter and R Housley. RFC 6460: Suite B profile for transport layer
security (TLS). Technical report, 2012.

[THP+09] Sean Turner, Russ Housley, Tim Polk, Daniel RL Brown, and Kelvin Yiu.
RFC 5480: Elliptic curve cryptography subject public key information. The
Internet Engineering Task Force, 2009.

[Tre] Trezor. Trezor Crypto. https://github.com/trezor/trezor-crypto.

[TTA18] Akira Takahashi, Mehdi Tibouchi, and Masayuki Abe. New Bleichenbacher
records: Fault attacks on qDSA signatures. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems, 2018(3):331–371, Aug. 2018.

[vdPSY15] Joop van de Pol, Nigel P. Smart, and Yuval Yarom. Just a little bit more.
In Kaisa Nyberg, editor, Topics in Cryptology — CT-RSA 2015, pages 3–21,
Cham, 2015. Springer International Publishing.

[Wol] WolfSSL. WolfCrypt. https://www.wolfssl.com/products/wolfcrypt/.

[Won15] David Wong. Timing and lattice attacks on a remote ecdsa openssl server:
How practical are they really? Cryptology ePrint Archive, Report 2015/839,
2015. https://eprint.iacr.org/2015/839.

[Yar16] Yuval Yarom. Mastik: A micro-architectural side-channel
toolkit. Retrieved from School of Computer Science Adelaide:
http://cs.adelaide.edu.au/˜yval/Mastik, 2016.

[YB14] Yuval Yarom and Naomi Benger. Recovering OpenSSL ECDSA nonces
using the FLUSH+RELOAD cache side-channel attack. Cryptology ePrint
Archive, Report 2014/140, 2014. https://eprint.iacr.org/2014/140.

[YF14] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD: A high resolution,
low noise, L3 cache side-channel attack. In Proceedings of the 23rd USENIX
Conference on Security Symposium, SEC’14, pages 719–732, Berkeley, CA,
USA, 2014. USENIX Association.

[YGH17] Yuval Yarom, Daniel Genkin, and Nadia Heninger. CacheBleed: a timing at-
tack on OpenSSL constant-time RSA. Journal of Cryptographic Engineering,
7(2):99–112, Jun 2017.

[YL06] Tatu Ylonen and Chris Lonvick. RFC 4253: The secure shell (SSH) transport
layer protocol. The Internet Engineering Task Force, 2006.

https://github.com/trezor/trezor-crypto
https://www.wolfssl.com/products/wolfcrypt/
https://eprint.iacr.org/2015/839
https://eprint.iacr.org/2014/140

	Introduction
	Contributions
	Attack Scenario
	Related Work

	Mathematical Background
	ECDSA and DSA
	The Hidden Number Problem
	Prior Attacks on ECDSA and DSA

	Software Implementations
	Cryptanalysis
	Chosen-Plaintext Attack
	Known-Plaintext Attack

	Experimental Results
	Attacking OpenSSL
	Solving the Hidden Number Problem

	Countermeasures
	Conclusion

