
The Mersenne Twister Output Stream Postprocessing

Yurii Shcherbyna
1, Nadiia Kazakova2, Oleksii Fraze-Frazenko3

1 National University "Odesa Law Academy", Rishelievska st., 28, Odesa, 65011, Ukraine
2,3 Odesa State Environmental University, 15 Lvivska str., Odesa, 65016, Ukraine

Abstract
Today, pseudo-random number sequence generators are actively used to solve a large number

of applied problems of statistical and simulation modeling in such areas as telecommunications

networks, automated control systems for production processes and infrastructure, security

systems and others. Such generators have serious requirements for the sequence of numbers

that they generate at their outputs. These are, first of all, the requirements for their randomness.

The original sequences should be almost indistinguishable from the truly random ones. And,

most importantly, they must also ensure a high uniformity of probability distribution of the

original numbers. It is shown that the non-uniformity of numbers at the output of the primary

generator significantly affects the quality of modeling of stochastic processes that take place in

systems for which computer models are built. Tests on a linear congruent generator and a

Mersenne twister (MT) generator have shown that the flow of decimal real numbers at their

outputs does not fully meet the needs of modern computer modeling. The vast majority of tests

of such flows using the Pearson chi-square test gives an unsatisfactory result. Based on the

analysis of post-processing methods of numerical sequences, it is proposed to perform

preliminary thinning of the input in relation to the model of the numerical flow by removing

elements that do not fit into the uniform distribution. The expected sum of random real numbers

to be included in each of the segments of the random number distribution histogram is chosen

as the thinning criterion. It is shown that the use of this method of post-processing of the primary

generator does not require extra computing resources of the system.

Keywords 1
Simulation, linear congruent generator, Mersenne twister generator, inverse function method,

Pearson chi-square test, post-processing of numerical flow.

1. Introduction

If in the second half of the last century

modeling was considered a secondary stage in the

design of complex systems, today the modern

development of computer technology

significantly increases its importance in the study

of stochastic processes that occur in modern

production, infrastructure management and

economic activity.

Usually the modeling of random processes

takes place in two stages: first a sequence of

III International Scientific And Practical Conference “Information

Security And Information Technologies”, September 13–19, 2021,

Odesa, Ukraine

EMAIL: shcherbinayura53@gmail.com (A. 1); kaz2003@ukr.net

(A. 2); frazenko@gmail.com (A. 3)

ORCID: 0000-0003-3885-6747 (A. 1); 0000-0003-3968-4094

(A. 2); 0000-0002-2288-8253 (A. 3)

©️ 2021 Copyright for this paper by its authors. Use permitted under Creative

Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

random variables evenly distributed on the

interval [0, 1] is created, and only then a sequence

of numbers is formed from them, which

corresponds to the given probability distribution

law. Because computing devices are deterministic

automata, they can only output pseudo-random

numbers (PRN) with a limited repetition period of

T. For efficient modeling, PRN generation

algorithms must provide high speed, long

repetition periods, and good statistics. [1].

Libraries of modern programming languages

already contain PRN generators with a uniform

distribution law, which return the number 𝑈𝑖 from

the finite set {0, 1, … , 𝑇 − 1}. It is also possible to

connect external libraries offered by different

developers. Most traditional PRN generators are

well described by Donald Knuth in [2], where he

concludes that they are of insufficient quality and

unsuitable for research needs.

The vast majority of PRN cryptographic

generators developed in recent decades have been

described in detail by Bruce Schneier in [3], but

they are hardly suitable for computer simulation.

First, their use requires significant computing

resources, which significantly reduces their

efficiency, and secondly, they ensure uniform

distribution at the binary level. As shown in [4],

the transformation of a binary sequence into a

decimal format and its subsequent scaling leads to

a significant loss of uniformity.

Recently, an algorithm known as the Mersenne

Twister (MT) has been proposed for modeling

purposes, which provides an extremely long

repetition period 219937 − 1 [5]. It, together with

the linear congruent generator (LCG) [6], is part

of the libraries of almost all known specialized

software environments designed to solve research

and engineering problems.

The two-stage modeling scheme is very

sensitive to the uniform distribution of numbers at

the output of the selected generator. As shown by

checking the flow of real numbers generated by

LCG and MT using Pearson's 𝜒2-test, up to half of

the samples, regardless of their size, are not tested

for uniformity.

Since the choice of PRN generator is

extremely limited for researchers, this problem

should be solved by upgrading the numerical flow

at the output of the PRN generator.

2. The aim of the study

To check the quality of pseudo-random

number generators, a large number of test packets

were created [7,8] and all of them perform the

analysis of the output stream at the binary level.

This is due to the fact that they are mainly

intended for testing cryptographic generators

focused on the performance of quenching

operations, which are performed bit by bit.

Divided into bytes and converted to a decimal

sequence of real numbers, a binary sequence does

not necessarily remain evenly distributed. In most

cases, it is necessary to perform its post

processing [9], choosing a method that would give

a satisfactory simulation result and, at the same

time, was effective in terms of the use of

computing resources. In view of this, the aim of

the study is to select and justify an additional

method of converting a sequence of pseudo-

random numbers at the output of the MT generator

to ensure a given level of uniformity of their

distribution.

3. Methods of post-processing

The general idea of additional processing of

numbers at the output of the generator was

formulated long ago, when the main source of

random numbers were physical noise occurring in

electronic devices, such as electronic lamps,

quantum generators and the like. Its essence is to

sacrifice a certain number of numbers at the

output of the generator for the sake of obtaining

an output stream that would satisfy the conditions.

Later, von Neumann remarked on the

inadmissibility of using physical generators in

computer technology, because due to technical

difficulties the possibility of re-implementing the

obtained sample of random numbers at that time

was absent and, therefore, proposed algorithms

for generating pseudo-random numbers as the

method of mean squares [10] and the linear

congruent method. But, as shown by D. Knuth [4],

they also did not provide the necessary uniformity

of the formed numerical flow. Since it is almost

impossible to make an ideal generator, the idea of

post-processing for both real random number

generators and PRN generators remains relevant.

At the moment, we can identify the following

four methods of post-processing: [9].

1. Ad hoc simple correctors.

2. Whitening with hash functions.

3. Extractor algorithms.

4. Resilient functions.

The general requirement for all methods of

post-processing is the minimization of resources

for their implementation.

An example of a simple corrector is the

corrector described by von Neumann in [10]

where he proposes to combine a pair of bits

obtained from independent sources on the

principle: if the bits match (00 or 11), the bits are

canceled, the combination of bits 01 corresponds

to 0-th the output bit, and the combination 10

corresponds to the 1st output bit. The maximum

efficiency of such an algorithm is on average 4

input bits per 1 output bit. It was in this work that

von Neumann emphasized the difficulty of

generating random decimal numbers.

Later, other, more advanced versions of

similar correctors were proposed, but they also

work at the bit level.

Whitening is a method that reduces the

correlation of symbols at the output of the entropy

source and increases the homogeneity and

uniformity of the distribution of symbols in the

output stream. It is usually performed using hash

algorithms, such as MD5, SHA-1, SHA-2, SHA-

256 or SHA-512. This processing is a

deterministic algorithm that converts input blocks

of characters of arbitrary length into a fixed size

string. In [11] it was shown that bleaching does

not increase entropy and therefore the main task

of ensuring randomness should be solved by the

PRN generator, and not by the post-processing

algorithm. It should be noted that the term

randomness means the absence of a noticeable

analytical relationship between the symbols at the

output of the PRN generator. But, in contrast to

cryptographic problems, in modeling it is

important to ensure the uniformity of the

distribution of the original numerical flow.

Randomity extractors are algorithms that

convert a low-quality stream of input values into

an almost uniform stream of numeric characters

with a small number of guaranteed random bits.

Formally, the method of such a transformation is

described in the work of Luke Trevisan [12]. To

characterize weak sources of chance, the author

introduces the concept of minimum entropy,

which characterizes the non-uniform distribution

of the quantity 𝑋 in the range {0,1}𝑛, where n is a

binary combination at the source output. In the

case of a perfectly uniform distribution, all

combinations will be equally probable and the

entropy will be maximum, otherwise it will be

smaller. If the minimum entropy of such a source

has a value of at least k, then for each 𝑥 ∈ {0,1}𝑛

the condition Pr[𝑋 = 𝑥] ≤ 2−𝑘 is fulfilled. The task

of the extractor is to convert the flow X into almost

uniform. To quantify the output flow, the concept

of statistical difference 𝜖 between two random

variables X and X in the range {0,1}𝑛 is used,

which is defined as:

|𝑝[𝑇(𝑋) = 1]| − |𝑝[𝑇(𝑌) = 1]| ≤ 𝜖 (1)

In the general case, the (𝑘, 𝜖) -extractor

converts the flow of random variables X into an

almost uniform flow by the rule:

𝐸𝑥𝑡 ∶ {0,1}𝑛 × {0,1}𝑡 → {0,1}𝑚,

(2)

where the random variable X has a minimum

entropy 𝑘, and 𝑈𝑡 is a uniformly distributed

quantity on {0,1}𝑡. The mechanism of operation of

the randomness extractor is shown in Figure 1.

Figure 1: The mechanism of the extractor

In [12], another method of amplifying the

randomness of the output flux of the PRN

generator, which is based on its postfiltration

through some deterministic process, is

considered. His idea is to use the use of elastic

functions to divide the original characters into

random and "not random enough". In [13], the

elastic function F is defined as the (𝑛, 𝑚, 𝑘) -

function 𝑓 ∶ 𝐹𝑛 → 𝐹𝑚, which forms each output k-

bit combination of fixed input bits directly, and

the others 𝑛 − 𝑘 bits are selected randomly. Such

functions were created exclusively for the needs

of cryptographic transformations.

From the above we can conclude that the work

on creating generators of random and pseudo-

random numbers is mainly focused on

cryptographic needs. At the heart of such

generators is a complex computational process,

the implementation of which requires significant

computing resources. For modeling purposes,

either LCG or MT generators are typically used,

which have unsatisfactory uniformity in the

distribution of the source symbols, but can be

subject to post-processing methods such as

combining streams from multiple sources and

thinning them by removing symbols that look like

“ not random enough ”.

4. Post-processing of a numerical
stream from the MT generator

Computer simulation of random processes

such as request flows in telecommunication

systems [1], flows of attacks on information

system resources [14], or failures of technical

equipment in computer systems, involves the use

of procedures containing elements of randomness

implemented using built based on number theory

and numerical analysis of optimally selected

deterministic systems. Such systems are

understood as arithmetic generators of pseudo-

random numbers, which are based on recurrent

relations. This means that each subsequent

number at the output of the generator is

determined by one or more pre-formed numbers

and the flow of such numbers will be repeated

regularly with period 𝑇. Despite this dependence,

the numbers generated by the generator should

look independent throughout the period. only in

the case of their absolutely uniform distribution.

Such numbers, evenly distributed on the interval
[0, 1], are most often used for modeling purposes.

They must meet the following requirements:

1. the sequence must have the properties of

uniform distribution of random numbers in

the interval [0, 1] throughout the repetition

period 𝑇;

2. each fragment of the sequence within the

period 𝑇, from the output of the generator

must have the properties of uniform

distribution.

The first condition is not met by the definition

of PRN, but this shortcoming developers are

trying to compensate by creating algorithms for

generating numbers with too long a repetition

period. Both LCG and MT generators have fairly

long periods. The problem for them is the need to

initialize them with a real random number, but it

is quite simply solved by forming such a number

from the current time.

The second condition can be formally

described as follows. The general sequence

𝑥1, 𝑥2, … can be considered completely uniformly

distribute (CUD), if for any 𝑠 ≥ 1 part of this

sequence (𝑥𝑛, 𝑥𝑛+1, … , 𝑥𝑛+𝑠+1) 𝑛 = 1, 2, … will

also be evenly distributed.

In [6] it was shown that the LCG developers

tried to provide satisfactory generator

characteristics with the optimal ratio of the

coefficients 𝑎, 𝑐, 𝑚 of the recurrent ratio

𝑋𝑛+1 = (𝑎𝑋𝑛 + 𝑐) 𝑚𝑜𝑑 𝑚. (3)

As practice shows, the function rand() is built

into most modern programming environments and

uses as a module 𝑚 32-bit machine bit word,

which provides a period of repetition of numbers

T at the output of the generator, which does not

exceed the value of 𝑚 = 232. As for the uniformity

of the distribution of the output stream, it remains

extremely low.

Figure 2 shows an example of a histogram of

the distribution of numbers at the output of the

LCG, obtained using the function rand(), which is

part of the library C ++. The value of the sample

N is 1024 numbers, and the number of intervals of

the histogram is 16.

Figure 2: Histogram of the distribution of PRN
obtained by the function rand()

A check of the quality of the distribution using

the 𝜒2 −test showed that more than two-thirds of

the samples do not meet the requirements of

uniformity. Figure 3 shows the distribution of the

number of hits in each of the 16 intervals of the

histogram, Figure 2. Here are the limits of the

intervals of the histogram (Xmin, Xmax), the

probability of hitting the number in the interval

(Pi), the number of hits in the interval (Ni) and

components indicator 𝜒2 −-test (Hi), for each

specific interval of the histogram.

Figure 3: Boundaries of histogram intervals and
distribution of sample numbers between them

The total quality index according to Pearson's

𝜒2 −-test is calculated by the formula

𝜒2 = ∑
(𝑛𝑖 − 𝑁𝑖

∗)2

𝑁𝑖
∗

𝑘

𝑖=1

,
(4)

where 𝑘 – this is the number of segments of the

histogram, 𝑛𝑖 and 𝑁𝑖
∗ – the number of random

numbers of the output stream that actually fell in

the i-th interval and their expected number,

respectively. The expected number with uniform

distribution 𝑁𝑖
∗ is defined as 𝑁/𝑘 and for the given

example is 64.

Similar tests were performed for the MT

generator. Unlike the LCG generator, it has a

much longer repetition period, which is equal to

𝑇 = 219937 − 1 bits, and the algorithm embedded

in it provides very little correlation between two

samples from the original sequence of numbers.

The developers of the generator claim that it

passes the tests of the DIEHARD package [8].

However, all the declared positive qualities of

such a generator are valid for a binary sequence.

Tests of real numbers distributed in the interval

[0, 1] using the 𝜒2 −test showed that only 10  15

percent of samples from the output stream from

the MT generator give a positive test result.

Figure 4 shows an example of a histogram of

the distribution of numbers at the output of MT,

obtained using the function

uniform_real_distribution<> mersenne(0, 1) from the

library C ++ <cmath.h>

Figure 4: Histogram of the PRN distribution
obtained using the function
uniform_real_distribution<> mersenne(0, 1)

The sample size N, as in the case of the LCG

generator, was equal to 1024 real decimal

numbers, and the number of intervals of the

histogram k was also equal to 16.

To model stochastic processes, the method is

most often used, the essence of which is that on

the basis of the conditions of inverse functions and

the theorem according to which a continuous

random variable 𝑥, with an arbitrary distribution

having a probability distribution function 𝐹(𝑥),

determines a continuous uniformly distributed on

the interval [0, 1], the random variable 𝛾 =
𝐹−1(𝛾) [15]. This method works well when the

process can be described analytically and the

inverse function 𝐹−1(𝑥) exists for it.

To evaluate the numbers distribution

uniformity influence at the output of the MT

generator on the quality of the simulation,

consider the example of creating a numerical

flow, which is described by the Weibull function

with two parameters. It looks like this:

𝐹(𝑥, 𝛼, 𝛽) = 1 − 𝑒−(𝑥/𝛽)𝛼
. (5)

where 𝛼 – is a scale parameter, 𝛽 – form

parameter, а 𝑥 – variable. 𝛼 і 𝛽 – are fixed values

for which the conditions 𝛼 > 0, 𝛽 > 0 must be

met. In case if 𝛽 = 1, Weibull's distribution

coincides with the exponential distribution.

The inverse function looks like:

𝐹−1(𝑥) = 𝛽[−ln (1 − 𝑥)]1/𝛼. (6)

We assume that at the output of the MT

generator there is a flow of numbers 𝑦1, 𝑦2, …
which express the probability of events of the

random Weibull process. Then, using relation (6),

we can obtain a stream of numbers 𝑥1, 𝑥2, …,

which in accordance with this principle, is

determined by relation (5) and expresses the

argument of the distribution function.

Next, we construct a histogram, on the basis of

which we calculate the quality index by the 𝜒2-

test. The choice of this criterion is determined by

the fact that, firstly, its use is not limited to the

type of distribution and, secondly, if this criterion

is not met, then all other criteria, too, are unlikely

to be met.

A separate issue in the special literature is the

choice of the number of segments of the

histogram. They should be sufficient so that the

shape of the histogram in its form as close as

possible to the form of the Weibull distribution

density function described by the expression:

𝑝(𝑥) =
𝛼

𝛽𝛼
𝑥𝛼−1𝑒−(𝑥/𝛽)𝛼

. (7)

On the other hand, the number of segments should

not be too large so as not to lose the filtering

capabilities of the histogram, as is the case with

signal quantization. Today there are several

different ways to determine their number and the

most popular is the formula proposed in 1926 by

Sturges [16]

𝑘 = 1 + ⌊𝑙𝑜𝑔2𝑁⌋ (8)

where 𝑘 number of histogram segments, and 𝑁 –

the number of characters in the random number

sample. This formula is derived from the binomial

distribution and implicitly assumes work with the

normal distribution.

There are other formulas that also allow you to

determine the approximate number of segments.

A good option is the formula proposed in 1981 by

Freedman and Diaconis [17], which gives the

length of the segment h, expressed in terms of

interquartile range (the distance between the end

of the first and the beginning of the last quartile of

the IQ sample)

ℎ = 2 ∙ (𝐼𝑄) ∙ 𝑁−1/3
, (9)

where the number of segments can be defined as

𝑘 =
𝑦𝑚𝑎𝑥−𝑦𝑚𝑖𝑛

ℎ
. (10)

where 𝑦𝑚𝑎𝑥 and 𝑦𝑚𝑖𝑛 are, respectively, the

maximum and minimum values of the members

of the sample variation series.

All the proposed methods for calculating the

number of segments of the histogram were

determined based on the problem of finding the

type of distribution based on the accumulated

statistical material and, each time, the researchers

proceeded from the features of the process to be

evaluated. That is why there are so many ways to

determine the value of k. As for the simulation, the

inverse problem is solved here, when the method

of distribution of random variables is known and,

therefore, the value of the number of segments is

not so critical and can be determined arbitrarily.

If the inverse function method converts a

sequence of random numbers from the MT

generator into a random Weibull process with the

parameters 𝛼 = 1.3, 𝛽 = 0.1, it will look like

Figure 5.

Figure 5: The result of modeling a random
Weibull process by the inverse function method

An additional problem that arises when

estimating an asymmetric random process is that,

taking into account the peculiarities of formula

(4), very few random numbers 𝑛𝑖 fall into the last

segments of the “tails” of the distribution and,

therefore, these components of the indicator 𝜒2-

test contributes the lion's share to the error, which

brings its value closer to the critical value 𝜒кр
2 . In

[2] D. Knuth points out that the sample size N

must ensure that each interval of the histogram

hits at least 5 random numbers. To avoid this

problem, and since the histogram segments do not

have to be the same size, we will combine the last

intervals with less than 6 numbers into one

common interval. For the example shown in

Figure 5, 16 segments of the histogram will be

filled as follows

The table in Figure 6 shows the boundaries of

the intervals of the histogram (Xmin, Xmax), the

probability of hitting the number in the interval

(Pi), the number of hits in the interval (ni), the

expected number of hits in the interval (Ni) and

the component indicator 𝜒2-test (Hi).

Figure 6: Boundaries of histogram intervals and
their filling for Weibull distribution

From the table shown in Figure 6, it is seen that

the segments 12 to 16 do not allow to calculate the

corresponding components of the indicator 𝜒2,

and therefore they are combined into one interval,

for which 𝑛𝑖 = 9, and 𝑛𝑖
∗ = 8. At the level of five

percent error (λ = 0.05) for the given example, its

value is 𝜒2 = 17.723577, which is more than the

critical value 𝜒
кр
2 = 7.290644, and this means

dissatisfaction with the simulation result. This

result is confirmed in the vast majority of

subsequent tests and, thus, it can be concluded that

it is necessary to correct the numerical flux at the

output of the MT generator by post-processing.

As can be seen from the above analysis of post-

processing methods, the vast majority of them

were developed for cryptography and, therefore,

are unacceptable for the correction of the

numerical flow at the output of the MT generator

due to their excessive complexity. The solution to

the problem should not burden the computer

system with significant additional resources.

Given the admissibility of such operations as

combining numerical streams, their "bleaching"

or "sieving", as well as the use of Pearson's 𝜒2-test

to assess the uniformity of number distribution,

we will try to "align" it by removing from its

composition "extra" elements .

Figure 7: Histogram of the PRN distribution
obtained at the output of the MT generator after
post-processing

It is expected that in the case of uniform

distribution in each segment of the histogram

should fall the same number of random numbers

equal to 𝑁𝑖
∗ = 𝑁/𝑘. The mathematical expectation

of a quantity to be included in a segment bounded

by the conditions 𝑥𝑚𝑖𝑛 ≤ 𝑥𝑖 < 𝑥𝑚𝑎𝑥 is defined as

𝑚𝑖 = (𝑥𝑚𝑖𝑛 + 𝑥𝑚𝑎𝑥)/2. Then the number of

numbers that fall into the i-th segment 𝑆𝑖, will be

approximately equal to the value of 𝑆𝑖
∗ = 𝑁𝑖

∗𝑚𝑖. Of

course, each time this sum will be either less than

𝑆𝑖
∗, or more than 𝑆𝑖

∗, but there will be no significant

difference. This makes it possible to formulate

such an algorithm. If the sum of the numbers 𝑆𝑖

that fall into the i-th segment of the histogram

exceeds the value of 𝑆𝑖
∗, then all other numbers

that fall into it are skipped. Of course, the number

of numbers in the segments will remain different,

but the unevenness of the sample will be smaller.

Figure 8: Boundaries of histogram intervals and
their filling with numbers from the output of the
MT generator after post-processing

Figure 7 shows the test results of a sample of

length 𝑁 = 1024 real decimal pseudo-random

numbers at the output of the MT generator after

post-processing as described, and the filling of

histogram segments is shown in Figure 8 Now, for

λ = 0.05 𝜒2 = 0.3438, which is less than critical

value 𝜒
кр
2 = 7.2609..

Figure 9: Histogram of the Weibull process, based
on the table in Figure 8

The Weibull process formed by the method of

the inverse function of the numbers from the MT

generator after their post-processing gives

significantly better results. The histogram

constructed on the basis of such flow is shown in

figure 9.

The table in Figure 10 shows the distribution

of numbers in the segments of the histogram

shown in Figure 9 and the components of the 𝜒2-

test.

Figure 10: Boundaries of histogram intervals and
distribution of numbers between them for
Weibull distribution after post-processing

For the given example for λ = 0.05 , 𝜒2 =

4.10807, which is less than the critical value 𝜒кр
2 =

7.260944.

Subsequent tests showed that the use of the

proposed method of "thinning" the input stream

from the MT generator, gives significantly better

simulation results in terms of their reliability.

5. Conclusions

The experience of modern computer modeling

shows that the use of specialized software

packages such as Boost, Glib, C ++, Python,

Ruby, R, PHP, MATLAB and Autoit requires

significant computing resources and therefore the

simulation of stochastic processes is better

performed using common tools programming in

languages that allow you to create economical

program code. Modern C ++ programming

environments, such as Visual Studio and QT5, are

a good option. They include a large number of

additional libraries containing various PRN

generators.

Such generators are built on the basis of

recurrent algorithms and do not provide a given

level of uniformity of distribution of real numbers

in the output stream and, therefore, their use for

modeling significantly affects its quality.

The problem of improving the quality of

modeling can be solved by supplementing the

algorithm for calculating operations that provide

pre-randomization of the input stream. As such

operations, you can use the removal of the original

numbers, the presence of which violates the

uniformity of the distribution of the primary

generator. One way to implement such an

algorithm is to limit the number of characters in

each segment of the histogram by the value of the

expected sum of random numbers, which is

determined by the mathematical expectation of

the number in the segment and the expected

number of numbers in the segment. Tests show

that the unevenness of the primary generator with

this method of post-processing has almost no

effect on the quality of modeling.

6. References

[1] Averill M. Law. Simulation modeling and

analysis, 5th. ed., McGraw-Hill Education, 2

Penn Plaza, New York, 2015. URL:

https://industri.fatek.unpatti.ac.id/wp-

content/uploads/2019/03/108-Simulation-

Modeling-and-Analysis-Averill-M.-Law-

Edisi-5-2014.pdf

[2] D. E. Knuth, The Art of Computer

Programming, Volume 2: Seminumerical

Algorithms, 3rd. ed., Boston, Mass, USA :

Addison-Wesley, Longman Publishing,

Addison-Wesley, Reading, Mass, 1998.

URL:

https://doc.lagout.org/science/0_Computer%

20Science/2_Algorithms/The%20Art%20of

%20Computer%20Programming%20%28vo

l.%202_%20Seminumerical%20Algorithms

%29%20%283rd%20ed.%29%20%5BKnut

h%201997-11-14%5D.pdf

[3] Bruce Schneier, Applied Cryptography,

Second Edition: Protocols, Algorthms, and

Source Code in C, 20. ed., Boston, Mass,

USA : Addison-Wesley, Longman

Publishing, Addison-Wesley, Reading,

Mass, 1998. doi:10.1002/9781119183471

URL: https://lost-

contact.mit.edu/afs/adrake.org/usr/rkh/Book

s/books/Schneier%20-

%20Applied%20Cryptography%202ed%20-

%20Wiley.pdf.

[4] J. H. Ahrens, U. Dieter, A. Grube, Pseudo-

random numbers. Computing 6 (1970) 121-

138). URL:

https://doi.org/10.1007/BF02241740.

[5] Saito, M. An Application of Finite Field:

Design and Implementation of 128-bit

Instruction-Based Fast Pseudorandom

Number Generator. Dept. of Math. Graduate

School of Science, February 9th, 2007. URL:

http://www.math.sci.hiroshima-u.ac.jp/~m-

mat/MT/SFMT/M062821.pdf.

[6] Niederreiter H. Quasi-Monte Carlo methods

and pseudo-random number. doi:

https://doi.org/10.1090/S0002-9904-1978-

14532-7. URL:

https://www.ams.org/journals/bull/1978-84-

06/S0002-9904-1978-14532-7/S0002-9904-

1978-14532-7.pdf.

[7] A Statistical Test Suite for Random and

Pseudorandom Number Generators for

Cryptographic Applications. SP 800-22 Rev.

1a, April 2010. URL:

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/

nistspecialpublication800-22r1a.pdf.

[8] The Marsaglia Random Number CDROM

including the Diehard Battery of Tests of

Randomness, 1995. URL:

http://ftpmirror.your.org/pub/misc/diehard/.

[9] Mario Stipčević, True Random Number

Generators. Open Problems in Mathematics

https://industri.fatek.unpatti.ac.id/wp-content/uploads/2019/03/108-Simulation-Modeling-and-Analysis-Averill-M.-Law-Edisi-5-2014.pdf
https://industri.fatek.unpatti.ac.id/wp-content/uploads/2019/03/108-Simulation-Modeling-and-Analysis-Averill-M.-Law-Edisi-5-2014.pdf
https://industri.fatek.unpatti.ac.id/wp-content/uploads/2019/03/108-Simulation-Modeling-and-Analysis-Averill-M.-Law-Edisi-5-2014.pdf
https://industri.fatek.unpatti.ac.id/wp-content/uploads/2019/03/108-Simulation-Modeling-and-Analysis-Averill-M.-Law-Edisi-5-2014.pdf
https://doc.lagout.org/science/0_Computer%20Science/2_Algorithms/The%20Art%20of%20Computer%20Programming%20%28vol.%202_%20Seminumerical%20Algorithms%29%20%283rd%20ed.%29%20%5BKnuth%201997-11-14%5D.pdf
https://doc.lagout.org/science/0_Computer%20Science/2_Algorithms/The%20Art%20of%20Computer%20Programming%20%28vol.%202_%20Seminumerical%20Algorithms%29%20%283rd%20ed.%29%20%5BKnuth%201997-11-14%5D.pdf
https://doc.lagout.org/science/0_Computer%20Science/2_Algorithms/The%20Art%20of%20Computer%20Programming%20%28vol.%202_%20Seminumerical%20Algorithms%29%20%283rd%20ed.%29%20%5BKnuth%201997-11-14%5D.pdf
https://doc.lagout.org/science/0_Computer%20Science/2_Algorithms/The%20Art%20of%20Computer%20Programming%20%28vol.%202_%20Seminumerical%20Algorithms%29%20%283rd%20ed.%29%20%5BKnuth%201997-11-14%5D.pdf
https://doc.lagout.org/science/0_Computer%20Science/2_Algorithms/The%20Art%20of%20Computer%20Programming%20%28vol.%202_%20Seminumerical%20Algorithms%29%20%283rd%20ed.%29%20%5BKnuth%201997-11-14%5D.pdf
https://doc.lagout.org/science/0_Computer%20Science/2_Algorithms/The%20Art%20of%20Computer%20Programming%20%28vol.%202_%20Seminumerical%20Algorithms%29%20%283rd%20ed.%29%20%5BKnuth%201997-11-14%5D.pdf
https://lost-contact.mit.edu/afs/adrake.org/usr/rkh/Books/books/Schneier%20-%20Applied%20Cryptography%202ed%20-%20Wiley.pdf
https://lost-contact.mit.edu/afs/adrake.org/usr/rkh/Books/books/Schneier%20-%20Applied%20Cryptography%202ed%20-%20Wiley.pdf
https://lost-contact.mit.edu/afs/adrake.org/usr/rkh/Books/books/Schneier%20-%20Applied%20Cryptography%202ed%20-%20Wiley.pdf
https://lost-contact.mit.edu/afs/adrake.org/usr/rkh/Books/books/Schneier%20-%20Applied%20Cryptography%202ed%20-%20Wiley.pdf
https://lost-contact.mit.edu/afs/adrake.org/usr/rkh/Books/books/Schneier%20-%20Applied%20Cryptography%202ed%20-%20Wiley.pdf
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/M062821.pdf
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/M062821.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-22r1a.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-22r1a.pdf
https://www.researchgate.net/profile/Mario-Stipcevic

and Computational Science, Open Problems

in Mathematics and Computational Science

275-315) doi:10.1007/978-3-319-10683-0_12

URL:

https://www.researchgate.net/publication/29

9824248_True_Random_Number_Generato

rs.

[10] J. von Neumann. Various techniques for use

in connection with random digits. Applied

Math Series, Notes by G. E. Forsythe, in

National Bureau of Standards, Vol. 12, 36 –

38, 1951. URL:

https://mcnp.lanl.gov/pdf_files/nbs_vonneu

mann.pdf.

[11] Sunar, B. Martin, W. J. Stinson, D. R. A

Provably Secure True Random Number

Generator with Built-in Tolerance to Active

Attacks doi:10.1109/TC.2007.250627 URL:

https://cs.uwaterloo.ca/~dstinson/papers/rng

-IEEE.pdf.

[12] Trevisan L. Extractors and Pseudorandom

Generators 1999. Journal of the ACM URL:

http://theory.stanford.edu/~trevisan/pubs/ext

ractor-full.pdf

[13] Reshef, Yakir. On Resilient and Exposure-

Resilient Functions. 2009. URL:

https://www.math.harvard.edu/media/reshef.

pdf.

[14] Shcherbyna, Y. Analysis of attacks in

modern cyberphysical systems , Kazakova,

N. , Fraze-Frazenko, O., Parchuts, L. ,

Schneider, S. CEUR Workshop Proceedings,

2019, 2683, pp. 12-14

[15] Ross S. A First Course in Probability. 8th

Edition. 2010. ISBN-13: 978-0136033134

URL:

http://julio.staff.ipb.ac.id/files/2015/02/Ross

_8th_ed_English.pdf

[16] Sturges, H. (1926) The choice of a class-

interval. J. Amer. Statist. Assoc., 21, P. 65–

66. URL:

https://www.tandfonline.com/doi/abs/10.10

80/0162

[17] Freedman, D. and Diaconis, P. (1981) On

this histogram as a density estimator: L2

theory. Zeit. Wahr. ver. Geb., 57, 453–476.

URL:

https://bayes.wustl.edu/Manual/FreedmanDi

aconis1_1981.pdf

http://dx.doi.org/10.1007/978-3-319-10683-0_12
https://mcnp.lanl.gov/pdf_files/nbs_vonneumann.pdf
https://mcnp.lanl.gov/pdf_files/nbs_vonneumann.pdf
https://doi.org/10.1109/TC.2007.250627
https://www.infona.pl/contributor/0@bwmeta1.element.ieee-art-000001663725/tab/publications
https://www.math.harvard.edu/media/reshef.pdf
https://www.math.harvard.edu/media/reshef.pdf

