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Abstract 
Today, pseudo-random number sequence generators are actively used to solve a large number 

of applied problems of statistical and simulation modeling in such areas as telecommunications 

networks, automated control systems for production processes and infrastructure, security 

systems and others. Such generators have serious requirements for the sequence of numbers 

that they generate at their outputs. These are, first of all, the requirements for their randomness. 

The original sequences should be almost indistinguishable from the truly random ones. And, 

most importantly, they must also ensure a high uniformity of probability distribution of the 

original numbers. It is shown that the non-uniformity of numbers at the output of the primary 

generator significantly affects the quality of modeling of stochastic processes that take place in 

systems for which computer models are built. Tests on a linear congruent generator and a 

Mersenne twister (MT) generator have shown that the flow of decimal real numbers at their 

outputs does not fully meet the needs of modern computer modeling. The vast majority of tests 

of such flows using the Pearson chi-square test gives an unsatisfactory result. Based on the 

analysis of post-processing methods of numerical sequences, it is proposed to perform 

preliminary thinning of the input in relation to the model of the numerical flow by removing 

elements that do not fit into the uniform distribution. The expected sum of random real numbers 

to be included in each of the segments of the random number distribution histogram is chosen 

as the thinning criterion. It is shown that the use of this method of post-processing of the primary 

generator does not require extra computing resources of the system. 
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1. Introduction 

If in the second half of the last century 

modeling was considered a secondary stage in the 

design of complex systems, today the modern 

development of computer technology 

significantly increases its importance in the study 

of stochastic processes that occur in modern 

production, infrastructure management and 

economic activity. 

Usually the modeling of random processes 

takes place in two stages: first a sequence of 
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random variables evenly distributed on the 

interval [0, 1] is created, and only then a sequence 

of numbers is formed from them, which 

corresponds to the given probability distribution 

law. Because computing devices are deterministic 

automata, they can only output pseudo-random 

numbers (PRN) with a limited repetition period of 

T. For efficient modeling, PRN generation 

algorithms must provide high speed, long 

repetition periods, and good statistics. [1]. 

Libraries of modern programming languages 

already contain PRN generators with a uniform 

distribution law, which return the number 𝑈𝑖 from 



the finite set {0, 1, … , 𝑇 − 1}. It is also possible to 

connect external libraries offered by different 

developers. Most traditional PRN generators are 

well described by Donald Knuth in [2], where he 

concludes that they are of insufficient quality and 

unsuitable for research needs. 

The vast majority of PRN cryptographic 

generators developed in recent decades have been 

described in detail by Bruce Schneier in [3], but 

they are hardly suitable for computer simulation. 

First, their use requires significant computing 

resources, which significantly reduces their 

efficiency, and secondly, they ensure uniform 

distribution at the binary level. As shown in [4], 

the transformation of a binary sequence into a 

decimal format and its subsequent scaling leads to 

a significant loss of uniformity. 

Recently, an algorithm known as the Mersenne 

Twister (MT) has been proposed for modeling 

purposes, which provides an extremely long 

repetition period 219937 − 1 [5]. It, together with 

the linear congruent generator (LCG) [6], is part 

of the libraries of almost all known specialized 

software environments designed to solve research 

and engineering problems. 

The two-stage modeling scheme is very 

sensitive to the uniform distribution of numbers at 

the output of the selected generator. As shown by 

checking the flow of real numbers generated by 

LCG and MT using Pearson's 𝜒2-test, up to half of 

the samples, regardless of their size, are not tested 

for uniformity. 

Since the choice of PRN generator is 

extremely limited for researchers, this problem 

should be solved by upgrading the numerical flow 

at the output of the PRN generator. 

2. The aim of the study 

To check the quality of pseudo-random 

number generators, a large number of test packets 

were created [7,8] and all of them perform the 

analysis of the output stream at the binary level. 

This is due to the fact that they are mainly 

intended for testing cryptographic generators 

focused on the performance of quenching 

operations, which are performed bit by bit. 

Divided into bytes and converted to a decimal 

sequence of real numbers, a binary sequence does 

not necessarily remain evenly distributed. In most 

cases, it is necessary to perform its post 

processing [9], choosing a method that would give 

a satisfactory simulation result and, at the same 

time, was effective in terms of the use of 

computing resources. In view of this, the aim of 

the study is to select and justify an additional 

method of converting a sequence of pseudo-

random numbers at the output of the MT generator 

to ensure a given level of uniformity of their 

distribution. 

3. Methods of post-processing 

The general idea of additional processing of 

numbers at the output of the generator was 

formulated long ago, when the main source of 

random numbers were physical noise occurring in 

electronic devices, such as electronic lamps, 

quantum generators and the like. Its essence is to 

sacrifice a certain number of numbers at the 

output of the generator for the sake of obtaining 

an output stream that would satisfy the conditions. 

Later, von Neumann remarked on the 

inadmissibility of using physical generators in 

computer technology, because due to technical 

difficulties the possibility of re-implementing the 

obtained sample of random numbers at that time 

was absent and, therefore, proposed algorithms 

for generating pseudo-random numbers as the 

method of mean squares [10 ] and the linear 

congruent method. But, as shown by D. Knuth [4], 

they also did not provide the necessary uniformity 

of the formed numerical flow. Since it is almost 

impossible to make an ideal generator, the idea of 

post-processing for both real random number 

generators and PRN generators remains relevant. 

At the moment, we can identify the following 

four methods of post-processing: [9]. 

1. Ad hoc simple correctors. 

2. Whitening with hash functions. 

3. Extractor algorithms. 

4. Resilient functions. 

The general requirement for all methods of 

post-processing is the minimization of resources 

for their implementation. 

An example of a simple corrector is the 

corrector described by von Neumann in [10] 

where he proposes to combine a pair of bits 

obtained from independent sources on the 

principle: if the bits match (00 or 11), the bits are 

canceled, the combination of bits 01 corresponds 

to 0-th the output bit, and the combination 10 

corresponds to the 1st output bit. The maximum 

efficiency of such an algorithm is on average 4 

input bits per 1 output bit. It was in this work that 

von Neumann emphasized the difficulty of 

generating random decimal numbers. 



Later, other, more advanced versions of 

similar correctors were proposed, but they also 

work at the bit level. 

Whitening is a method that reduces the 

correlation of symbols at the output of the entropy 

source and increases the homogeneity and 

uniformity of the distribution of symbols in the 

output stream. It is usually performed using hash 

algorithms, such as MD5, SHA-1, SHA-2, SHA-

256 or SHA-512. This processing is a 

deterministic algorithm that converts input blocks 

of characters of arbitrary length into a fixed size 

string. In [11] it was shown that bleaching does 

not increase entropy and therefore the main task 

of ensuring randomness should be solved by the 

PRN generator, and not by the post-processing 

algorithm. It should be noted that the term 

randomness means the absence of a noticeable 

analytical relationship between the symbols at the 

output of the PRN generator. But, in contrast to 

cryptographic problems, in modeling it is 

important to ensure the uniformity of the 

distribution of the original numerical flow. 

Randomity extractors are algorithms that 

convert a low-quality stream of input values into 

an almost uniform stream of numeric characters 

with a small number of guaranteed random bits. 

Formally, the method of such a transformation is 

described in the work of Luke Trevisan [12]. To 

characterize weak sources of chance, the author 

introduces the concept of minimum entropy, 

which characterizes the non-uniform distribution 

of the quantity 𝑋 in the range {0,1}𝑛, where n is a 

binary combination at the source output. In the 

case of a perfectly uniform distribution, all 

combinations will be equally probable and the 

entropy will be maximum, otherwise it will be 

smaller. If the minimum entropy of such a source 

has a value of at least k, then for each 𝑥 ∈  {0,1}𝑛 

the condition Pr[𝑋 = 𝑥] ≤ 2−𝑘 is fulfilled. The task 

of the extractor is to convert the flow X into almost 

uniform. To quantify the output flow, the concept 

of statistical difference 𝜖 between two random 

variables X and X in the range {0,1}𝑛 is used, 

which is defined as: 
 

|𝑝[𝑇(𝑋) = 1]| − |𝑝[𝑇(𝑌) = 1]| ≤ 𝜖 (1) 
 

In the general case, the (𝑘, 𝜖) -extractor 

converts the flow of random variables X into an 

almost uniform flow by the rule: 
 

𝐸𝑥𝑡 ∶  {0,1}𝑛 × {0,1}𝑡 → {0,1}𝑚, 

 

(2) 
 

where the random variable X has a minimum 

entropy 𝑘, and 𝑈𝑡 is a uniformly distributed 

quantity on {0,1}𝑡. The mechanism of operation of 

the randomness extractor is shown in Figure 1. 
 

 

Figure 1: The mechanism of the extractor 
 

In [12], another method of amplifying the 

randomness of the output flux of the PRN 

generator, which is based on its postfiltration 

through some deterministic process, is 

considered. His idea is to use the use of elastic 

functions to divide the original characters into 

random and "not random enough". In [13], the 

elastic function F is defined as the (𝑛, 𝑚, 𝑘) -

function 𝑓 ∶  𝐹𝑛 → 𝐹𝑚, which forms each output k-

bit combination of fixed input bits directly, and 

the others 𝑛 − 𝑘 bits are selected randomly. Such 

functions were created exclusively for the needs 

of cryptographic transformations. 

From the above we can conclude that the work 

on creating generators of random and pseudo-

random numbers is mainly focused on 

cryptographic needs. At the heart of such 

generators is a complex computational process, 

the implementation of which requires significant 

computing resources. For modeling purposes, 

either LCG or MT generators are typically used, 

which have unsatisfactory uniformity in the 

distribution of the source symbols, but can be 

subject to post-processing methods such as 

combining streams from multiple sources and 

thinning them by removing symbols that look like 

“ not random enough ”. 

4. Post-processing of a numerical 
stream from the MT generator 

Computer simulation of random processes 

such as request flows in telecommunication 

systems [1], flows of attacks on information 

system resources [14], or failures of technical 

equipment in computer systems, involves the use 

of procedures containing elements of randomness 

implemented using built based on number theory 

and numerical analysis of optimally selected 

deterministic systems. Such systems are 

understood as arithmetic generators of pseudo-

random numbers, which are based on recurrent 

relations. This means that each subsequent 

number at the output of the generator is 



determined by one or more pre-formed numbers 

and the flow of such numbers will be repeated 

regularly with period 𝑇. Despite this dependence, 

the numbers generated by the generator should 

look independent throughout the period. only in 

the case of their absolutely uniform distribution. 

Such numbers, evenly distributed on the interval 
[0, 1], are most often used for modeling purposes. 

They must meet the following requirements: 

1. the sequence must have the properties of 

uniform distribution of random numbers in 

the interval [0, 1] throughout the repetition 

period 𝑇; 

2. each fragment of the sequence within the 

period 𝑇, from the output of the generator 

must have the properties of uniform 

distribution. 

The first condition is not met by the definition 

of PRN, but this shortcoming developers are 

trying to compensate by creating algorithms for 

generating numbers with too long a repetition 

period. Both LCG and MT generators have fairly 

long periods. The problem for them is the need to 

initialize them with a real random number, but it 

is quite simply solved by forming such a number 

from the current time. 

The second condition can be formally 

described as follows. The general sequence 

𝑥1,  𝑥2, … can be considered completely uniformly 

distribute (CUD), if for any 𝑠 ≥ 1 part of this 

sequence (𝑥𝑛, 𝑥𝑛+1, … , 𝑥𝑛+𝑠+1)  𝑛 = 1, 2, …  will 

also be evenly distributed. 

In [6] it was shown that the LCG developers 

tried to provide satisfactory generator 

characteristics with the optimal ratio of the 

coefficients 𝑎,  𝑐,  𝑚 of the recurrent ratio 
 

𝑋𝑛+1 =  (𝑎𝑋𝑛 + 𝑐) 𝑚𝑜𝑑 𝑚. (3) 
 

As practice shows, the function rand() is built 

into most modern programming environments and 

uses as a module 𝑚 32-bit machine bit word, 

which provides a period of repetition of numbers 

T at the output of the generator, which does not 

exceed the value of 𝑚 = 232. As for the uniformity 

of the distribution of the output stream, it remains 

extremely low. 

Figure 2 shows an example of a histogram of 

the distribution of numbers at the output of the 

LCG, obtained using the function rand(), which is 

part of the library C ++. The value of the sample 

N is 1024 numbers, and the number of intervals of 

the histogram is 16. 
 

 
Figure 2: Histogram of the distribution of PRN 
obtained by the function rand() 
 

A check of the quality of the distribution using 

the 𝜒2 −test showed that more than two-thirds of 

the samples do not meet the requirements of 

uniformity. Figure 3 shows the distribution of the 

number of hits in each of the 16 intervals of the 

histogram, Figure 2. Here are the limits of the 

intervals of the histogram (Xmin, Xmax), the 

probability of hitting the number in the interval 

(Pi), the number of hits in the interval (Ni) and 

components indicator 𝜒2 −-test (Hi), for each 

specific interval of the histogram. 
 

 
Figure 3: Boundaries of histogram intervals and 
distribution of sample numbers between them 
 

The total quality index according to Pearson's 

𝜒2 −-test is calculated by the formula 
 

𝜒2 =  ∑
(𝑛𝑖 − 𝑁𝑖

∗)2

𝑁𝑖
∗

𝑘

𝑖=1

, 
(4) 

where 𝑘 – this is the number of segments of the 

histogram, 𝑛𝑖 and 𝑁𝑖
∗ – the number of random 

numbers of the output stream that actually fell in 

the i-th interval and their expected number, 

respectively. The expected number with uniform 



distribution 𝑁𝑖
∗ is defined as 𝑁/𝑘 and for the given 

example is 64. 

Similar tests were performed for the MT 

generator. Unlike the LCG generator, it has a 

much longer repetition period, which is equal to 

𝑇 = 219937 − 1 bits, and the algorithm embedded 

in it provides very little correlation between two 

samples from the original sequence of numbers. 

The developers of the generator claim that it 

passes the tests of the DIEHARD package [8]. 

However, all the declared positive qualities of 

such a generator are valid for a binary sequence. 

Tests of real numbers distributed in the interval 

[0, 1] using the 𝜒2 −test showed that only 10  15  

percent of samples from the output stream from 

the MT generator give a positive test result. 

Figure 4 shows an example of a histogram of 

the distribution of numbers at the output of MT, 

obtained using the function 

uniform_real_distribution<> mersenne(0, 1) from the 

library C ++ <cmath.h> 
 

 
Figure 4: Histogram of the PRN distribution 
obtained using the function 
uniform_real_distribution<> mersenne(0, 1) 
 

The sample size N, as in the case of the LCG 

generator, was equal to 1024 real decimal 

numbers, and the number of intervals of the 

histogram k was also equal to 16. 

To model stochastic processes, the method is 

most often used, the essence of which is that on 

the basis of the conditions of inverse functions and 

the theorem according to which a continuous 

random variable 𝑥, with an arbitrary distribution 

having a probability distribution function 𝐹(𝑥), 

determines a continuous uniformly distributed on 

the interval [0, 1], the random variable 𝛾 =
𝐹−1(𝛾) [15]. This method works well when the 

process can be described analytically and the 

inverse function 𝐹−1(𝑥) exists for it. 

To evaluate the numbers  distribution  

uniformity  influence at the output of the MT 

generator on the quality of the simulation, 

consider the example of creating a numerical 

flow, which is described by the Weibull function 

with two parameters. It looks like this: 
 

𝐹(𝑥, 𝛼, 𝛽) = 1 − 𝑒−(𝑥/𝛽)𝛼
. (5) 

 

where 𝛼 – is a scale parameter, 𝛽 – form 

parameter, а 𝑥 – variable. 𝛼 і 𝛽 – are fixed values 

for which the conditions 𝛼 > 0, 𝛽 > 0 must be 

met. In case if 𝛽 = 1, Weibull's distribution 

coincides with the exponential distribution. 

The inverse function looks like: 
 

𝐹−1(𝑥) = 𝛽[−ln (1 − 𝑥)]1/𝛼. (6) 
 

We assume that at the output of the MT 

generator there is a flow of numbers 𝑦1,  𝑦2, …  
which express the probability of events of the 

random Weibull process. Then, using relation (6), 

we can obtain a stream of numbers 𝑥1,  𝑥2, …, 

which in accordance with this principle, is 

determined by relation (5) and expresses the 

argument of the distribution function. 

Next, we construct a histogram, on the basis of 

which we calculate the quality index by the 𝜒2-

test. The choice of this criterion is determined by 

the fact that, firstly, its use is not limited to the 

type of distribution and, secondly, if this criterion 

is not met, then all other criteria, too, are unlikely 

to be met. 

A separate issue in the special literature is the 

choice of the number of segments of the 

histogram. They should be sufficient so that the 

shape of the histogram in its form as close as 

possible to the form of the Weibull distribution 

density function described by the expression: 
 

𝑝(𝑥) =
𝛼

𝛽𝛼
𝑥𝛼−1𝑒−(𝑥/𝛽)𝛼

. (7) 

 

On the other hand, the number of segments should 

not be too large so as not to lose the filtering 

capabilities of the histogram, as is the case with 

signal quantization. Today there are several 

different ways to determine their number and the 

most popular is the formula proposed in 1926 by 

Sturges [16] 
 

𝑘 = 1 + ⌊𝑙𝑜𝑔2𝑁⌋ (8) 
 

where 𝑘 number of histogram segments, and 𝑁 – 

the number of characters in the random number 

sample. This formula is derived from the binomial 

distribution and implicitly assumes work with the 

normal distribution. 

There are other formulas that also allow you to 

determine the approximate number of segments. 

A good option is the formula proposed in 1981 by 

Freedman and Diaconis [17], which gives the 

length of the segment h, expressed in terms of 



interquartile range (the distance between the end 

of the first and the beginning of the last quartile of 

the IQ sample) 
 

ℎ = 2 ∙ (𝐼𝑄) ∙ 𝑁−1/3
, (9) 

 

where the number of segments can be defined as 

𝑘 =
𝑦𝑚𝑎𝑥−𝑦𝑚𝑖𝑛

ℎ
. (10) 

 

where 𝑦𝑚𝑎𝑥 and 𝑦𝑚𝑖𝑛 are, respectively, the 

maximum and minimum values of the members 

of the sample variation series. 

All the proposed methods for calculating the 

number of segments of the histogram were 

determined based on the problem of finding the 

type of distribution based on the accumulated 

statistical material and, each time, the researchers 

proceeded from the features of the process to be 

evaluated. That is why there are so many ways to 

determine the value of k. As for the simulation, the 

inverse problem is solved here, when the method 

of distribution of random variables is known and, 

therefore, the value of the number of segments is 

not so critical and can be determined arbitrarily. 

If the inverse function method converts a 

sequence of random numbers from the MT 

generator into a random Weibull process with the 

parameters 𝛼 = 1.3, 𝛽 = 0.1, it will look like 

Figure 5. 
 

 
Figure 5: The result of modeling a random 
Weibull process by the inverse function method 
 

An additional problem that arises when 

estimating an asymmetric random process is that, 

taking into account the peculiarities of formula 

(4), very few random numbers 𝑛𝑖 fall into the last 

segments of the “tails” of the distribution and, 

therefore, these components of the indicator 𝜒2-

test contributes the lion's share to the error, which 

brings its value closer to the critical value 𝜒кр
2 . In 

[2] D. Knuth points out that the sample size N 

must ensure that each interval of the histogram 

hits at least 5 random numbers. To avoid this 

problem, and since the histogram segments do not 

have to be the same size, we will combine the last 

intervals with less than 6 numbers into one 

common interval. For the example shown in 

Figure 5, 16 segments of the histogram will be 

filled as follows 

The table in Figure 6 shows the boundaries of 

the intervals of the histogram (Xmin, Xmax), the 

probability of hitting the number in the interval 

(Pi), the number of hits in the interval (ni), the 

expected number of hits in the interval (Ni) and 

the component indicator 𝜒2-test (Hi). 
 

 
Figure 6: Boundaries of histogram intervals and 
their filling for Weibull distribution 
 

From the table shown in Figure 6, it is seen that 

the segments 12 to 16 do not allow to calculate the 

corresponding components of the indicator 𝜒2, 

and therefore they are combined into one interval, 

for which 𝑛𝑖 = 9, and 𝑛𝑖
∗ = 8. At the level of five 

percent error (λ = 0.05) for the given example, its 

value is 𝜒2 = 17.723577, which is more than the 

critical value  𝜒
кр
2 = 7.290644, and this means 

dissatisfaction with the simulation result. This 

result is confirmed in the vast majority of 

subsequent tests and, thus, it can be concluded that 

it is necessary to correct the numerical flux at the 

output of the MT generator by post-processing. 

As can be seen from the above analysis of post-

processing methods, the vast majority of them 

were developed for cryptography and, therefore, 

are unacceptable for the correction of the 

numerical flow at the output of the MT generator 

due to their excessive complexity. The solution to 

the problem should not burden the computer 

system with significant additional resources. 

Given the admissibility of such operations as 

combining numerical streams, their "bleaching" 

or "sieving", as well as the use of Pearson's 𝜒2-test 

to assess the uniformity of number distribution, 



we will try to "align" it by removing from its 

composition "extra" elements . 
 

 
Figure 7: Histogram of the PRN distribution  
obtained at the output of the MT generator after 
post-processing 
 

It is expected that in the case of uniform 

distribution in each segment of the histogram 

should fall the same number of random numbers 

equal to 𝑁𝑖
∗ = 𝑁/𝑘. The mathematical expectation 

of a quantity to be included in a segment bounded 

by the conditions 𝑥𝑚𝑖𝑛 ≤ 𝑥𝑖 < 𝑥𝑚𝑎𝑥 is defined as 

𝑚𝑖 = (𝑥𝑚𝑖𝑛 + 𝑥𝑚𝑎𝑥)/2. Then the number of 

numbers that fall into the i-th segment 𝑆𝑖, will be 

approximately equal to the value of 𝑆𝑖
∗ = 𝑁𝑖

∗𝑚𝑖. Of 

course, each time this sum will be either less than 

𝑆𝑖
∗, or more than 𝑆𝑖

∗, but there will be no significant 

difference. This makes it possible to formulate 

such an algorithm. If the sum of the numbers 𝑆𝑖 

that fall into the i-th segment of the histogram 

exceeds the value of 𝑆𝑖
∗, then all other numbers 

that fall into it are skipped. Of course, the number 

of numbers in the segments will remain different, 

but the unevenness of the sample will be smaller. 
 

 

Figure 8: Boundaries of histogram intervals and 
their filling with numbers from the output of the 
MT generator after post-processing 
 

Figure 7 shows the test results of a sample of 

length 𝑁 = 1024 real decimal pseudo-random 

numbers at the output of the MT generator after 

post-processing as described, and the filling of 

histogram segments is shown in Figure 8 Now, for 

λ = 0.05 𝜒2 = 0.3438, which is less than critical 

value  𝜒
кр
2 = 7.2609.. 

 

 
Figure 9: Histogram of the Weibull process, based 
on the table in Figure 8 
 

The Weibull process formed by the method of 

the inverse function of the numbers from the MT 

generator after their post-processing gives 

significantly better results. The histogram 

constructed on the basis of such flow is shown in 

figure 9. 

The table in Figure 10 shows the distribution 

of numbers in the segments of the histogram 

shown in Figure 9 and the components of the 𝜒2-

test. 
 

 
Figure 10: Boundaries of histogram intervals and 
distribution of numbers between them for 
Weibull distribution after post-processing 
 



For the given example for λ = 0.05 , 𝜒2 =

4.10807, which is less than the critical value 𝜒кр
2 =

7.260944.  

Subsequent tests showed that the use of the 

proposed method of "thinning" the input stream 

from the MT generator, gives significantly better 

simulation results in terms of their reliability. 

5.  Conclusions 

The experience of modern computer modeling 

shows that the use of specialized software 

packages such as Boost, Glib, C ++, Python, 

Ruby, R, PHP, MATLAB and Autoit requires 

significant computing resources and therefore the 

simulation of stochastic processes is better 

performed using common tools programming in 

languages that allow you to create economical 

program code. Modern C ++ programming 

environments, such as Visual Studio and QT5, are 

a good option. They include a large number of 

additional libraries containing various PRN 

generators. 

Such generators are built on the basis of 

recurrent algorithms and do not provide a given 

level of uniformity of distribution of real numbers 

in the output stream and, therefore, their use for 

modeling significantly affects its quality. 

The problem of improving the quality of 

modeling can be solved by supplementing the 

algorithm for calculating operations that provide 

pre-randomization of the input stream. As such 

operations, you can use the removal of the original 

numbers, the presence of which violates the 

uniformity of the distribution of the primary 

generator. One way to implement such an 

algorithm is to limit the number of characters in 

each segment of the histogram by the value of the 

expected sum of random numbers, which is 

determined by the mathematical expectation of 

the number in the segment and the expected 

number of numbers in the segment. Tests show 

that the unevenness of the primary generator with 

this method of post-processing has almost no 

effect on the quality of modeling. 
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