
Merkle trees and
Blockchains

Dor Cohen

Alice and Bob

• Bob stores a set of items for Alice.

• Alice keeps a single value.

• Alice can validate the Items returned to her.

Basics - Cryptographic Hash

• Arbitrary Input size.

•Output size is fixed.

•H(x) is easy to compute.

• But finding any x, x’ s.t. H(x) = H(x’), should be
computationally hard.

• The output should also appear “random”.

First Solution
• Alice keeps the hash of the entire set.

H(, ,)

Validation Of An Item
Bob sends all of the items to Alice.

H(, ,)

H(, ,)

Alice compares the result to the value she has saved.

Alice computes the hash of the items.

Problems With First Solution

• Bob must send Alice the entire set for validation.

OK?

Problems With First Solution

• Bob must send Alice the entire set for validation.

•Denote m to be the size of the set.

•We have O(m) network traffic for validating a single item.

• Can we do better?

Validating An Item

d

Bob sends Alice an item d and a logarithmic size proof.

F(,)

Alice compares the result to the value she has saved.

Alice computes a function of the item and proof.

Proof

ce86b7dde40...

Merkle Tree

H(H1,4,H5,8)

H(H1,2,H3,4)

H(d1,d2)

d1 d2

H(d3,d4)

d3 d4

H(H5,6,H7,8)

H(d5,d6)

d5 d6

H(d7,d8)

d7 d8

Merkle root

Validating An Item

d

Bob sends Alice an item d and a logarithmic size proof.

F(,)

Alice compares the result to the root she has saved.

Alice uses the proof to compute the Merkle root.

Proof

Merkle root

Alice Computes The Root
Given an item d and H1,H2,H3 hash values

d H1

H(. ||H1) H2

H(. ||H2)H3

H(H3|| .)

What If d Isn’t Valid?
Given an item d and H1,H2,H3 hash values

d H1

H(. ||H1) H2

H(. ||H2)H3

H(H3|| .)

Blockchain– Full nodes

Block
Header

Transactions list
• 5b3a2…
• 3bc48…
• cd3a0…

Block
Header

Transactions list
• 5b3a2…
• 3bc48…
• cd3a0…

Block
Header

Transactions list
• 5b3a2…
• 3bc48…
• cd3a0…

Block
Header

Transactions list
• 5b3a2…
• 3bc48…
• cd3a0…

Block
Header

Transactions list
• 5b3a2…
• 3bc48…
• cd3a0…

Block
Header

Transactions list
• 5b3a2…
• 3bc48…
• cd3a0…

No double
spending

here

• Full nodes are nodes in the Blockchain network that store
the entire Blockchain in order to validate new transactions.

• Since Blockchains are decentralized full nodes are very
important to the network.

Motivation - Storing the Blockchain
• The problem is the Blockchain can take up a lot of

memory.

• And these numbers are constantly growing.

• Some devices such as mobile can’t spare that much
space.

Database size

149 GB (December 2017)Bitcoin

400 GB (February 2018)Ethereum

A Block in the Blockchain

• Block’s are consisted of two main parts:

Block Header
• Previous block header’s hash
• Nonce (proof of work)

Transactions list
• 5b3a2…
• 3bc48…
• cd3a0…

Light Nodes
• Light nodes were created for simple clients who want to

save on storage.

• They only store the chain of block headers.

• They follow the longest chain rule, without validating
transactions.

Block Header
• Previous block header’s hash
• Nonce (proof of work)

Transactions list
• 5b3a2…
• 3bc48…
• cd3a0…

Block Header
• Previous block header’s hash
• Nonce (proof of work)

Transactions list
• 5b3a2…
• 3bc48…
• cd3a0…

Paying With Light Nodes

• Same as full nodes.

Accepting Payment

???

Block Header
• Previous block header’s

hash
• Nonce (proof of work)

Transactions list
• 5b3a2…
• 3bc48…
• cd3a0…

Block Header
• Previous block header’s

hash
• Nonce (proof of work)

Transactions list
• 60ce1…
• 93f31…
• a7082…

Block Header
• Previous block header’s

hash
• Nonce (proof of work)

Transactions list
• 81ede…
• 5c371…
• 4e41d…

Block Header
• Previous block header

hash
• Nonce (proof of work)

Transactions list
• 85fc1a…
• bd93f…
• f4798…

Block Header
• Previous block header’s

hash
• Nonce (proof of work)

Block Header
• Previous block header’s

hash
• Nonce (proof of work)

Block Header
• Previous block header’s

hash
• Nonce (proof of work)

Block Header
• Previous block header

hash
• Nonce (proof of work)

Merkle Root In Header

• Put the Merkle root of transactions in the header.

Block Header
• Previous block header’s hash
• Nonce (proof of work)

Transactions list
• 5b3a2…
• 3fc48…
• cd3a0…
• 73e7c…

• Merkle root

Merkle Root In Header

•Now light nodes can request transactions from full
nodes, and know that they were from a block.

• Just like Alice did with Bob.

Forgetting Spent Transactions

•Having the Merkle root in the header has another
interesting perk.

• Freeing storage in full nodes by forgetting transactions
that are already spent.

Forgetting Spent Transactions

• Suppose that t1,t2,t3 have all been spent.

•We can get rid of most of them.

•Now we’re storing H(t1||t2) in the block
instead of t1 and t2. H(H1,2|| H3,4)

H(t1||t2)

t1 t2

H(t3||t4)

t3 t4

Forgetting Spent Transactions

• Suppose that t1,t2,t3 have all been spent.

•We can get rid of most of them.

•Now we’re storing H(t1||t2) in the block
instead of t1 and t2. H(H1,2|| H3,4)

H(t1||t2) H(t3||t4)

t3 t4

Conclusion

•Merkle trees are a smart way to hash.

• They allow for easier storage of Blockchains, allowing
headers to represent the entire block in a concise way.

• They even allows us to forget the transaction IDs of
spent transactions.

Questions?

